当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Narrow-Linewidth Tin-Vacancy Centers in a Diamond Waveguide
ACS Photonics ( IF 7 ) Pub Date : 2020-08-03 , DOI: 10.1021/acsphotonics.0c00833
Alison E. Rugar 1 , Constantin Dory 1 , Shahriar Aghaeimeibodi 1 , Haiyu Lu 2, 3 , Shuo Sun 1 , Sattwik Deb Mishra 1 , Zhi-Xun Shen 2, 3, 4, 5 , Nicholas A. Melosh 3, 5, 6 , Jelena Vučković 1
Affiliation  

Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties, including narrow-linewidth emission and long spin coherence times. SnV centers need to be incorporated in optical waveguides for efficient on-chip routing of the photons they generate. However, such integration has yet to be realized. In this Letter, we demonstrate the coupling of SnV centers to a nanophotonic waveguide. We realize this device by leveraging our recently developed shallow ion implantation and growth method for the generation of high-quality SnV centers and the advanced quasi-isotropic diamond fabrication technique. We confirm the compatibility and robustness of these techniques through successful coupling of narrow-linewidth SnV centers (as narrow as 36 ± 2 MHz) to the diamond waveguide. Furthermore, we investigate the stability of waveguide-coupled SnV centers under resonant excitation. Our results are an important step toward SnV-based on-chip spin-photon interfaces, single-photon nonlinearity, and photon-mediated spin interactions.

中文翻译:

金刚石波导中的窄线宽锡空缺中心

将固态量子发射器与光子电路集成在一起对于实现大规模量子光子处理器至关重要。带负电荷的锡-空缺(SNV - )在钻石中心已成为有前途的,因为它们的优异的光学和旋转特性的量子发射器候选人,包括窄线宽发射和长纺相干时间。SnV 中心需要整合到光波导中,以有效地在芯片上路由它们产生的光子。但是,这种集成尚未实现。在这封信中,我们演示了SnV 中心与纳米光子波导的耦合。通过利用我们最近开发的浅离子注入和生长方法来生成高质量SnV,我们实现了该器件中心和先进的准各向同性钻石制造技术。我们证实,这些技术通过窄线宽SNV的成功耦合的相容性和鲁棒性-中心(窄至36±2 MHz)的钻石波导。此外,我们研究了波导耦合SNV的稳定性-下共振激发中心。我们的结果是迈向基于SnV的重要一步-基于芯片的自旋光子界面,单光子非线性和光子介导的自旋相互作用。
更新日期:2020-09-16
down
wechat
bug