当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Climatology of Dust‐Forced Radiative Heating Over the Tibetan Plateau and Its Surroundings
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-08-03 , DOI: 10.1029/2020jd032942
Tianhe Wang 1 , Ying Han 1 , Jianping Huang 1 , Mengxian Sun 1 , Bida Jian 1 , Zhongwei Huang 1 , Hongru Yan 1
Affiliation  

Dust aerosol can affect the atmospheric thermal structure and exert great melting potential on snow and ice sheets. In this study, the decadal climatology of dust‐forced radiative heating (DRH) in the atmosphere over Tibetan Plateau and its surroundings (TPS) was investigated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model along with the CALIPSO satellite observations from 2007 to 2016. After screening out other aerosols, the vertical distribution of dust aerosol was examined to accurately assess the DRH. The net DRH showed a significant warm effect mainly by dust loading, which covers from the center of dust sources to their adjacent transport regions. The maximum value of the DRH appeared at the near‐surface, while the DRH decreased with an increase in height. The climatic average DRH at the near‐surface reached 16.8 K/month at the Taklimakan Desert (TD) and 10.8 K/month at the Gangetic Plain in spring, 13.7 K/month at the Indus Plain in summer, which is 3–3.6 times warmer than the column‐averaged DRHs. This study also found the most significant influence of dust events on the Qaidam Basin in the TPS, in which the near‐surface DRH was 4.7 K/month during spring. It is also noteworthy that the intermonth and interannual variations of the DRH highlighted the significant warming effect of dust aerosols on the atmospheric thermal structure, especially at the near‐surface. In addition, we need to pay more attention to changes in snow‐related processes influenced by absorbing aerosols and the light‐absorbing impurities deposited in snow over the TPS.

中文翻译:

青藏高原及其周边地区粉尘强迫辐射的气候学

粉尘气溶胶会影响大气的热力结构,并在雪和冰原上发挥巨大的融化潜力。在这项研究中,使用圣塔芭芭拉DISORT大气辐射传输(SBDART)模型以及CALIPSO 2007年以来的卫星观测资料,对青藏高原及其周围地区(TPS)大气中的强迫粉尘辐射加热(DRH)的年代际气候进行了研究。到2016年。在筛选出其他气溶胶后,检查了灰尘气溶胶的垂直分布,以准确评估DRH。净DRH主要通过粉尘负荷表现出显着的暖化作用,其覆盖范围从粉尘源的中心到其相邻的运输区域。DRH的最大值出现在近地表,而DRH随着高度的增加而减小。气候平均DRH在近地表达到16。塔克拉玛干沙漠(TD)春季为8 K /月,恒河平原为10.8 K /月,夏季印度河平原为13.7 K /月,比柱平均DRH高3–3.6倍。这项研究还发现,沙尘事件对TPS柴达木盆地的影响最大,春季春季近地表DRH为4.7 K /月。还值得注意的是,DRH的月际和年际变化突出显示了粉尘气溶胶对大气热结构的显着增暖作用,尤其是在近地表。此外,我们需要更加关注与雪相关的过程的变化,这些变化受吸收气溶胶和TPS上积雪中沉积的光吸收杂质的影响。夏季印度河平原每月7 K,比列平均DRH高3–3.6倍。这项研究还发现,沙尘事件对TPS柴达木盆地的影响最大,春季春季近地表DRH为4.7 K /月。还值得注意的是,DRH的月际和年际变化突出显示了粉尘气溶胶对大气热结构的显着增暖作用,尤其是在近地表。此外,我们需要更加关注与雪相关的过程的变化,这些变化受吸收气溶胶和TPS上积雪中沉积的光吸收杂质的影响。夏季印度河平原每月7 K,比列平均DRH高3–3.6倍。这项研究还发现,沙尘事件对TPS柴达木盆地的影响最大,春季春季近地表DRH为4.7 K /月。还值得注意的是,DRH的月际和年际变化突出显示了粉尘气溶胶对大气热结构的显着增暖作用,尤其是在近地表。此外,我们需要更加关注与雪相关的过程的变化,这些变化受吸收气溶胶和TPS上积雪中沉积的光吸收杂质的影响。春季7 K /月。还值得注意的是,DRH的月际和年际变化突出显示了粉尘气溶胶对大气热结构的显着增暖作用,尤其是在近地表。此外,我们需要更加关注与雪相关的过程的变化,这些变化受吸收气溶胶和TPS上积雪中沉积的光吸收杂质的影响。春季7 K /月。还值得注意的是,DRH的月际和年际变化突出显示了粉尘气溶胶对大气热结构的显着增暖作用,尤其是在近地表。此外,我们需要更加关注与雪相关的过程的变化,这些变化受吸收气溶胶和TPS上积雪中沉积的光吸收杂质的影响。
更新日期:2020-08-29
down
wechat
bug