当前位置: X-MOL 学术Sci. Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular cocrystal odyssey to unconventional electronics and photonics
Science Bulletin ( IF 18.9 ) Pub Date : 2020-08-03 , DOI: 10.1016/j.scib.2020.07.034
Weigang Zhu 1 , Xiaotao Zhang 1 , Wenping Hu 2
Affiliation  

Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists currently seek to answer are: can we design and control the molecular self-assembly and cocrystal growth, what’s the packing-property correlations, as well as how can we improve device parameters for real applications in industry. In this contribution, we review our and other groups’ recent advances in the cocrystal research field sequentially including: (1) nucleation and growth mechanisms for selective preparation of cocrystals with different donor/acceptor ratio and morphology; (2) charge transport and electronic devices, particularly field-effect transistor (FET) and photo-response device. We discuss the in-situ single crystal device fabrication method, ambipolar charge transport, and molecular packing-charge separation correlation; (3) photonic and optical property, focusing on optical waveguide, photonic logic computation, and nonlinear optics (NLO). We present unusual optical properties revealed by advanced instruments and general structure-function relations for future study. Importantly, the extensive investigations described herein yield in-depth and detailed understandings of molecular cocrystals, and show that such bi-component material systems together with the developed instrument measurement methodologies have the potential to initiate unconventional electronic and photonic science and technology.



中文翻译:

非常规电子学和光子学的分子共晶奥德赛

自 1844 年以来,共晶已经被发现和研究了 170 多年,而在光电子领域的应用只是最近十年才开始的。化学家和材料科学家目前寻求回答的几个普遍问题是:我们能否设计和控制分子自组装和共晶生长,堆积性能相关性如何,以及我们如何改进设备参数以用于实际工业应用。在这篇文章中,我们依次回顾了我们和其他团队在共晶研究领域的最新进展,包括:(1)选择性制备具有不同供体/受体比例和形态的共晶的成核和生长机制;(2) 电荷传输和电子器件,特别是场效应晶体管 (FET) 和光响应器件。我们讨论了原位单晶器件制造方法、双极性电荷传输和分子堆积-电荷分离相关性;(3)光子与光学特性,重点研究光波导、光子逻辑计算、非线性光学(NLO)。我们展示了先进仪器揭示的不寻常光学特性和一般结构-功能关系,以供未来研究。重要的是,本文描述的广泛研究对分子共晶产生了深入和详细的理解,并表明这种双组分材料系统与开发的仪器测量方法一起有可能启动非常规的电子和光子科学和技术。(3)光子与光学特性,重点研究光波导、光子逻辑计算、非线性光学(NLO)。我们展示了先进仪器揭示的不寻常光学特性和一般结构-功能关系,以供未来研究。重要的是,本文描述的广泛研究对分子共晶产生了深入和详细的理解,并表明这种双组分材料系统与开发的仪器测量方法一起有可能启动非常规的电子和光子科学和技术。(3)光子与光学特性,重点研究光波导、光子逻辑计算、非线性光学(NLO)。我们展示了先进仪器揭示的不寻常光学特性和一般结构-功能关系,以供未来研究。重要的是,本文描述的广泛研究对分子共晶产生了深入和详细的理解,并表明这种双组分材料系统与开发的仪器测量方法一起有可能启动非常规的电子和光子科学和技术。

更新日期:2020-08-04
down
wechat
bug