Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and extraction procedure for the electrical characterisation of silicon photomultiplier detectors
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ( IF 1.4 ) Pub Date : 2020-08-03 , DOI: 10.1016/j.nima.2020.164483
A. Duara , J.S. Lapington , J.O.D. Williams , S.A. Leach , D. Ross , T. Rawlins

Silicon photomultipliers (SiPMs), owing to their low-level photon counting capabilities, have increased in popularity in the field of high energy astrophysics, particle physics and medical imaging. It is crucial to accurately characterise SiPMs so they can be optimised for a particular application such as the Compact High Energy Camera (CHEC-S) for Imaging Atmospheric Cherenkov Telescopes (IACT). Extraction techniques, applied to SiPMs, can quantify opto-electrical parameters such as gain, quenching resistance, junction, parasitic and grid capacitance, rise time constant and slow and fast fall time constants. Various authors have applied and compared different extraction techniques to SiPMs, usually based on the Laplace Transform in the s-domain of the equivalent circuit model. These techniques typically utilise the pulse tail, and therefore only parameterise the recharge phase of the pulse. We will improve upon existing methods by utilising the discharge phase of an SiPM pulse in our transfer function model. In this paper, we have also applied this method to present the electrical characterisation of a novel SiPM detector: Hamamatsu LVR3 S14520-6075. The paper also details a method by which an accurate, average pulse shape, uncontaminated by after-pulsing or dark noise, can be obtained. This is a prerequisite for our analysis method, which fits the pulse shape derived from the transfer function of the SiPM model to the experimental data.



中文翻译:

硅光电倍增管探测器电气特性的实验和提取程序

硅光电倍增管(SiPM)由于其低水平的光子计数功能,已在高能天体物理学,粒子物理学和医学成像领域日益普及。准确表征SiPM至关重要,因此可以针对特定应用进行优化,例如用于大气Cherenkov望远镜成像的紧凑型高能相机(CHEC-S)。应用于SiPM的提取技术可以量化光电参数,例如增益,淬灭电阻,结,寄生和栅极电容,上升时间常数以及缓慢和快速下降时间常数。许多作者通常在等效电路模型的s域中基于拉普拉斯变换,将不同的提取技术应用于并比较了SiPM。这些技术通常利用脉冲尾波 因此只能参数化脉冲的充电相位。我们将通过在传递函数模型中利用SiPM脉冲的放电相位来改进现有方法。在本文中,我们还应用了这种方法来介绍新型SiPM检测器的电气特性:Hamamatsu LVR3 S14520-6075。本文还详细介绍了一种方法,通过该方法可以获得不受后脉冲或暗噪声污染的准确的平均脉冲形状。这是我们的分析方法的先决条件,该分析方法使从SiPM模型的传递函数得出的脉冲形状适合实验数据。我们还应用了这种方法来展示新型SiPM检测器的电气特性:Hamamatsu LVR3 S14520-6075。本文还详细介绍了一种方法,通过该方法可以获得不受后脉冲或暗噪声污染的准确的平均脉冲形状。这是我们的分析方法的先决条件,该分析方法使从SiPM模型的传递函数得出的脉冲形状适合实验数据。我们还应用了这种方法来展示新型SiPM检测器的电气特性:Hamamatsu LVR3 S14520-6075。本文还详细介绍了一种方法,通过该方法可以获得不受后脉冲或暗噪声污染的准确的平均脉冲形状。这是我们的分析方法的先决条件,该分析方法使从SiPM模型的传递函数得出的脉冲形状适合实验数据。

更新日期:2020-08-03
down
wechat
bug