当前位置: X-MOL 学术Brain Imaging Behav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Altered dynamics of functional connectivity density associated with early and advanced stages of motor training in tennis and table tennis athletes.
Brain Imaging and Behavior ( IF 3.2 ) Pub Date : 2020-08-03 , DOI: 10.1007/s11682-020-00331-5
Qing Gao 1, 2 , Yue Huang 1, 2 , Yu Xiang 1, 2 , Chengbo Yang 3 , Mu Zhang 4 , Jingpu Guo 3 , Hu Wang 3 , Jiali Yu 1 , Qian Cui 5 , Huafu Chen 2
Affiliation  

Until now, knowledge about the effects of motor training on the temporal dynamics of the brain functional organization is still limited. Here we combined dynamic functional connectivity density (dFCD) mapping and k-means clustering analyses to explore how early and advanced stages of motor training affected the brain dynamic FC architecture and dynamic states in little-ball athletes using resting-state functional magnetic resonance imaging (fMRI) data of student-athletes (SA), elite athletes (EA) and non-athlete healthy controls (NC). The ANOVA analysis demonstrated the levels of dFCD variability in the EA group had the trend to regress to the NC group levels in all statistically significant regions. Specifically, the brain regions responsible for the basic motor and sensory innervations showed more stabilized dFCD variability in EA and NC compared with SA. The results supported the idea of a stronger efficiency of functional networks and an automation process of new motor skills in EA. Furthermore, EA and NC had the increased dFCD variability in brain regions responsible for top-down visual-motor control compared with SA; while EA exhibited more flexible alterations in FCD status levels and the equilibrium probability in the long run compared with SA and NC. This suggested that regions involved in higher functions of visual-motor control exhibited more flexibility in functional regulation with other brain networks in EA. Our findings suggested the diversity and specialization of fluctuating dynamic brain adaption induced by motor training in different training stages, and highlighted the effect of motor training stages on brain functional adaption.



中文翻译:

与网球和乒乓球运动员运动训练的早期和晚期有关的功能连接密度的变化动力学。

到目前为止,关于运动训练对大脑功能组织的时间动态的影响的知识仍然很有限。在这里,我们结合了动态功能连接密度(dFCD)映射和k均值聚类分析,使用学生运动员(SA)(精英运动员)的静止状态功能磁共振成像(fMRI)数据,探索运动训练的早期和晚期阶段如何影响小球运动员的大脑动态FC结构和动态状态(EA)和非运动员健康对照(NC)。方差分析表明,在所有统计学上显着的地区,EA组的dFCD变异水平都有回归到NC组水平的趋势。具体而言,与SA相比,EA和NC中负责基本运动和感觉神经支配的大脑区域显示出更稳定的dFCD变异性。结果支持在EA中提高功能网络效率和自动化新运动技能的过程。此外,与SA相比,EA和NC在负责自上而下的视觉运动控制的大脑区域的dFCD变异性增加;而从长远来看,EA与SA和NC相比,在FCD状态水平和平衡概率方面表现出更灵活的变化。这表明参与视觉运动控制较高功能的区域在EA中与其他大脑网络的功能调节中表现出更大的灵活性。我们的发现表明运动训练在不同训练阶段引起的动态脑适应波动的多样性和专业性,并强调了运动训练阶段对脑功能适应的影响。而从长远来看,EA与SA和NC相比,在FCD状态水平和平衡概率方面表现出更灵活的变化。这表明参与视觉运动控制较高功能的区域在EA中与其他大脑网络的功能调节中表现出更大的灵活性。我们的发现表明运动训练在不同的训练阶段引起的动态脑适应波动的多样性和专业性,并强调了运动训练阶段对脑功能适应的影响。而从长远来看,EA与SA和NC相比,在FCD状态水平和平衡概率方面表现出更灵活的变化。这表明参与视觉运动控制较高功能的区域在EA中与其他大脑网络的功能调节中表现出更大的灵活性。我们的发现表明运动训练在不同训练阶段引起的动态脑适应波动的多样性和专业性,并强调了运动训练阶段对脑功能适应的影响。

更新日期:2020-08-04
down
wechat
bug