当前位置: X-MOL 学术Rare Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructural evolution and numerical simulation of laser-welded Ti2AlNb joints under different heat inputs
Rare Metals ( IF 8.8 ) Pub Date : 2020-08-04 , DOI: 10.1007/s12598-020-01508-z
Ke-Zhao Zhang , Zheng-Long Lei , Yan-Bin Chen , Ke Yang , Ye-Feng Bao

The influence of heat input on the microstructural evolution of laser-welded Ti2AlNb joints was investigated in this study. The thermal cycles during welding process were analyzed by numerical simulation. In the heat affected zone (HAZ), the amount of α2 and O phases decreased with laser power increasing. During the heating period, α2 → B2 and O → B2 transformations occurred, but the decomposition of the B2 phase into α2 and O phases was suppressed during the cooling period. The heat transfer in the HAZ generated more equiaxed B2 grains, fewer LAGBs and a weaker {001}<11¯0>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<\!\!1{\bar1}0\!\!>$$\end{document} texture due to recovery, recrystallization and grain growth. The phase composition of the fusion zone remained single with only the B2 phase with the increase in heat input, but the mode of grain growth transformed from cellular growth into cellular dendritic growth. A finite element model was established to simulate the thermal cycles during the welding process. Higher heat input induced higher peak temperature, leading to higher temperatures in the HAZ for longer periods of time, which was beneficial for the α2 → B2 and O → B2 transformations. The calculated cooling rates in both the HAZ and in the fusion zone were faster than the critical cooling rate for B2 → α2 and B2 → O transformations.

中文翻译:

不同热输入下激光焊接Ti2AlNb接头的显微组织演变与数值模拟

本研究研究了热输入对激光焊接 Ti2AlNb 接头显微组织演变的影响。通过数值模拟分析了焊接过程中的热循环。在热影响区 (HAZ),α2 和 O 相的数量随着激光功率的增加而减少。加热期间发生α2→B2和O→B2相变,而冷却期间B2相分解为α2和O相受到抑制。HAZ 中的热传递产生了更多的等轴 B2 晶粒、更少的 LAGB 和更弱的 {001}<11¯0>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage {amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<\!\!1{\bar1}0\!\! > $$\end{document} 由于恢复、再结晶和晶粒生长而产生的纹理。随着热输入的增加,熔合区的相组成保持单一,只有B2相,但晶粒的生长方式从细胞生长转变为细胞树枝状生长。建立了有限元模型来模拟焊接过程中的热循环。更高的热量输入会导致更高的峰值温度,导致 HAZ 中的温度在更长的时间内更高,这有利于 α2 → B2 和 O → B2 转变。热影响区和熔合区的计算冷却速度都比 B2 → α2 和 B2 → O 转变的临界冷却速度快。随着热输入的增加,熔合区的相组成保持单一,只有B2相,但晶粒的生长方式从细胞生长转变为细胞树枝状生长。建立了有限元模型来模拟焊接过程中的热循环。更高的热量输入会导致更高的峰值温度,导致 HAZ 中的温度在更长的时间内更高,这有利于 α2 → B2 和 O → B2 转变。热影响区和熔合区的计算冷却速度都比 B2 → α2 和 B2 → O 转变的临界冷却速度快。随着热输入的增加,熔合区的相组成保持单一,只有B2相,但晶粒的生长方式从细胞生长转变为细胞树枝状生长。建立了有限元模型来模拟焊接过程中的热循环。更高的热量输入会导致更高的峰值温度,导致 HAZ 中的温度在更长的时间内更高,这有利于 α2 → B2 和 O → B2 转变。热影响区和熔合区的计算冷却速度都比 B2 → α2 和 B2 → O 转变的临界冷却速度快。建立了有限元模型来模拟焊接过程中的热循环。更高的热量输入会导致更高的峰值温度,导致 HAZ 中的温度在更长的时间内更高,这有利于 α2 → B2 和 O → B2 转变。热影响区和熔合区的计算冷却速度都比 B2 → α2 和 B2 → O 转变的临界冷却速度快。建立了有限元模型来模拟焊接过程中的热循环。更高的热量输入会导致更高的峰值温度,导致 HAZ 中的温度在更长的时间内更高,这有利于 α2 → B2 和 O → B2 转变。热影响区和熔合区的计算冷却速度都比 B2 → α2 和 B2 → O 转变的临界冷却速度快。
更新日期:2020-08-04
down
wechat
bug