当前位置: X-MOL 学术Probab Theory Relat Fields › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Outliers of random perturbations of Toeplitz matrices with finite symbols
Probability Theory and Related Fields ( IF 2 ) Pub Date : 2020-08-03 , DOI: 10.1007/s00440-020-00990-x
Anirban Basak , Ofer Zeitouni

Consider an $N\times N$ Toeplitz matrix $T_N$ with symbol ${ a }(\lambda) := \sum_{\ell=-d_2}^{d_1} a_\ell \lambda^\ell$, perturbed by an additive noise matrix $N^{-\gamma} E_N$, where the entries of $E_N$ are centered i.i.d.~complex random variables of unit variance and $\gamma>1/2$. It is known that the empirical measure of eigenvalues of the perturbed matrix converges weakly, as $N\to\infty$, to the law of ${a}(U)$, where $U$ is distributed uniformly on $\mathbb{S}^1$. In this paper, we consider the outliers, i.e. eigenvalues that are at a positive ($N$-independent) distance from ${a}(\mathbb{S}^1)$. We prove that there are no outliers outside ${\rm spec} \, T({ a})$, the spectrum of the limiting Toeplitz operator, with probability approaching one, as $N \to \infty$. In contrast, in ${\rm spec}\, T({a})\setminus { a}({\mathbb S}^1)$ the process of outliers converges to the point process described by the zero set of certain random analytic functions. The limiting random analytic functions can be expressed as linear combinations of the determinants of finite sub-matrices of an infinite dimensional matrix, whose entries are i.i.d.~having the same law as that of $E_N$. The coefficients in the linear combination depend on the roots of the polynomial $P_{z, { a}}(\lambda):= ({ a}(\lambda) -z)\lambda^{d_2}=0$ and semi-standard Young Tableaux with shapes determined by the number of roots of $P_{z,{ a}}(\lambda)=0$ that are greater than one in moduli.

中文翻译:

具有有限符号的 Toeplitz 矩阵的随机扰动异常值

考虑一个 $N\times N$ Toeplitz 矩阵 $T_N$,符号 ${ a }(\lambda) := \sum_{\ell=-d_2}^{d_1} a_\ell \lambda^\ell$,由加性噪声矩阵 $N^{-\gamma} E_N$,其中 $E_N$ 的条目是中心 iid~单位方差和 $\gamma>1/2$ 的复数随机变量。众所周知,扰动矩阵的特征值的经验测度弱收敛于 ${a}(U)$ 定律,其中 $U$ 在 $\mathbb{ 上均匀分布,如 $N\to\infty$ S}^1$。在本文中,我们考虑离群值,即与 ${a}(\mathbb{S}^1)$ 处于正($N$ 独立)距离处的特征值。我们证明在 ${\rm spec} \, T({ a})$ 之外没有异常值,T({ a})$ 是限制 Toeplitz 算子的频谱,概率接近 1,如 $N \to \infty$。相比之下,在 ${\rm spec}\ 中,T({a})\setminus { a}({\mathbb S}^1)$ 离群值的过程收敛到某些随机解析函数的零集所描述的点过程。极限随机解析函数可以表示为无限维矩阵的有限子矩阵的行列式的线性组合,其项为iid~与$E_N$具有相同的规律。线性组合中的系数取决于多项式 $P_{z, { a}}(\lambda):= ({ a}(\lambda) -z)\lambda^{d_2}=0$ 和 semi - 标准 Young Tableaux,其形状由模数大于 1 的 $P_{z,{ a}}(\lambda)=0$ 的根数确定。极限随机解析函数可以表示为无限维矩阵的有限子矩阵的行列式的线性组合,其项为iid~与$E_N$具有相同的规律。线性组合中的系数取决于多项式 $P_{z, { a}}(\lambda):= ({ a}(\lambda) -z)\lambda^{d_2}=0$ 和 semi - 标准 Young Tableaux,其形状由模数大于 1 的 $P_{z,{ a}}(\lambda)=0$ 的根数确定。极限随机解析函数可以表示为无限维矩阵的有限子矩阵的行列式的线性组合,其项为iid~与$E_N$具有相同的规律。线性组合中的系数取决于多项式 $P_{z, { a}}(\lambda):= ({ a}(\lambda) -z)\lambda^{d_2}=0$ 和 semi - 标准 Young Tableaux,其形状由模数大于 1 的 $P_{z,{ a}}(\lambda)=0$ 的根数确定。
更新日期:2020-08-03
down
wechat
bug