当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structured nanoscale metallic glass fibres with extreme aspect ratios.
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2020-08-03 , DOI: 10.1038/s41565-020-0747-9
Wei Yan 1, 2 , Inès Richard 1 , Güven Kurtuldu 3 , Nicholas D James 4, 5 , Giuseppe Schiavone 6 , Jordan W Squair 4, 5 , Tung Nguyen-Dang 1 , Tapajyoti Das Gupta 1 , Yunpeng Qu 1 , Jake D Cao 3 , Reinis Ignatans 7 , Stéphanie P Lacour 6 , Vasiliki Tileli 7 , Grégoire Courtine 4, 5 , Jörg F Löffler 3 , Fabien Sorin 1
Affiliation  

Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 1010. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain–machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.



中文翻译:

具有极高纵横比的结构化纳米级金属玻璃纤维。

微米和纳米级金属玻璃为医疗保健,微工程,光学和电子学的基础研究和应用提供了令人兴奋的机会。然而,与纳米级金属玻璃的制造和利用相关的科学和技术挑战仍未解决。在这里,我们基于具有匹配流变特性的聚合物基体中的热共拉伸,提出了一种具有纳米级结构的金属玻璃纤维的简单且可扩展的制造方法。我们的方法可生产出秩序井然且均匀的金属玻璃,其特征尺寸可控制到几十纳米,纵横比大于10 10。我们将流体动力学与先进的原位透射电子显微镜分析相结合,阐明了流体不稳定性与结晶动力学之间的相互作用,从而决定了可达到的特征尺寸。我们的方法产生了复杂的光纤体系结构,该体系结构与其他功能材料相结合,可以实现新的高级全光纤设备。我们特别展示了一种在体内经过测试的可植入金属玻璃纤维探针,用于稳定的脑机接口,为创新的高性能和多功能神经探针铺平了道路。

更新日期:2020-08-03
down
wechat
bug