当前位置: X-MOL 学术ChemRxiv › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Organization of Alpha Helical Proteins in Bioinspired Membranes and Vesicles
ChemRxiv Pub Date : 2020-08-03 , DOI: 10.26434/chemrxiv.12746609.v1
Akash Banerjee , Zachary Finkel , Meenakshi Dutt

ABSTRACT

A fundamental understanding of protein-protein and protein-lipid interactions under various conditions can reveal the energy pathways in photosynthetic bacterial membranes. In this study, we examine the role of key factors such as bilayer curvature, the concentration, helical separation and hydrophobic mismatch of proteins on their self-organization in bilayers. We also develop an understanding of the physical factors underlying the aggregation of proteins. We determine the impact of bilayer curvature by comparing the aggregation of proteins in membranes and vesicles. We identify a threshold helical separation below which small, stable aggregates are observed. Large, unstable protein aggregates are observed above the threshold separation. We examine the effect of the deformations incurred by the proteins via their concentration, and show the aggregation of the proteins to arise from their deformation-induced displacement. We demonstrate the negative hydrophobic mismatch condition to favor a higher degree of protein aggregation. We adopt the Molecular Dynamics simulation technique along with a coarse-grained force field to capture the behavior spanning extensive spatiotemporal scales. Our results can guide experimental studies of bioinspired materials with structure-function properties mimicking those of photosynthetic bacterial membranes, or assist in understanding the organization of inclusions in polymeric matrices.



中文翻译:

生物启发的膜和囊泡中的α螺旋蛋白的自组织。

摘要

对各种条件下的蛋白质-蛋白质和蛋白质-脂质相互作用的基本理解可以揭示光合细菌膜中的能量途径。在这项研究中,我们检查了诸如双层曲率,浓度,螺旋分离和疏水性错配等关键因素对蛋白质在双层中的自组织的作用。我们还发展了对蛋白质聚集的物理因素的理解。我们通过比较膜和囊泡中蛋白质的聚集来确定双层曲率的影响。我们确定了一个阈值螺旋间距,在该阈值以下可以观察到小的稳定聚集体。在阈值分离以上观察到大的不稳定蛋白质聚集体。我们研究了蛋白质通过其浓度引起的变形的影响,并显示了蛋白质的聚集,这些蛋白质的聚集是由其变形诱导的位移引起的。我们证明了负疏水错配条件有利于更高程度的蛋白质聚集。我们采用分子动力学模拟技术以及一个粗粒度的力场来捕获跨越广泛时空尺度的行为。我们的结果可以指导具有结构功能特性的生物启发性材料的实验研究,其模仿光合细菌膜的结构功能,或者有助于理解聚合物基质中内含物的组织。我们采用分子动力学模拟技术以及一个粗粒度的力场来捕获跨越广泛时空尺度的行为。我们的结果可以指导具有结构功能特性的生物启发性材料的实验研究,其模仿光合细菌膜的结构功能,或者有助于理解聚合物基质中内含物的组织。我们采用分子动力学模拟技术以及一个粗粒度的力场来捕获跨越广泛时空尺度的行为。我们的结果可以指导具有结构功能特性的生物启发性材料的实验研究,其模仿光合细菌膜的结构功能,或者有助于理解聚合物基质中内含物的组织。

更新日期:2020-08-03
down
wechat
bug