当前位置: X-MOL 学术Acta Cryst. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attaining atomic resolution from in situ data collection at room temperature using counter-diffusion-based low-cost microchips.
Acta Crystallographica Section D ( IF 2.2 ) Pub Date : 2020-08-03 , DOI: 10.1107/s2059798320008475
Jose A Gavira 1 , Isaac Rodriguez-Ruiz 2 , Sergio Martinez-Rodriguez 1 , Shibom Basu 3 , Sébastien Teychené 2 , Andrew A McCarthy 3 , Christoph Mueller-Dieckman 4
Affiliation  

Sample handling and manipulation for cryoprotection currently remain critical factors in X‐ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal‐manipulation issues, increased background noise originating from the scattering of chip‐fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low‐cost, X‐ray‐transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter‐diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in‐line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.

中文翻译:

使用基于反向扩散的低成本微芯片,在室温下从原位数据收集中获得原子分辨率。

目前,用于防冻的样品处理和操作仍然是X射线结构确定中的关键因素。尽管在过去的二十年中已经提出了几种用于大分子结晶的微芯片,以部分克服晶体操纵问题,但是由于芯片制造材料的散射而引起的背景噪声增加,迄今为止限制了衍射数据的可分辨性。在这里,低成本,X射线透明的微芯片的原位设计和使用介绍了结晶和直接数据收集,以及原子分辨率接近1.0Å的结构确定。这些芯片是由OSTEMER和Kapton或OSTEMER和Mylar材料的组合制成的,用于实施反扩散结晶实验。两种材料均产生足够低的散射背景,以允许在室温下收集原子分辨率的衍射数据,并生成被测模型蛋白溶菌酶,奇异蛋白和葡萄糖异构酶的3D结构模型。尽管三个模型蛋白晶体的高度对称性在高分辨率下产生了几乎完整的数据集,但仍介绍并讨论了沿数据合并和缩放沿微流体通道生长的多个晶体的潜力。
更新日期:2020-08-03
down
wechat
bug