当前位置: X-MOL 学术Phys. Lett. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First principle investigation of H2Se, H2Te and PH3 sensing based on graphene oxide
Physics Letters A ( IF 2.6 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.physleta.2020.126775
Ehab Salih , Ahmad I. Ayesh

Abstract Detecting toxic gases is of great importance to protect our health and preserve the quality of life. In this work, graphene (G) and graphene oxide with three different modifications (G–O, G–OH, and G–O–OH) have been used to detect hydrogen selenide (H2Se), hydrogen telluride (H2Te), and phosphine (PH3) molecules based on Atomistic ToolKit Virtual NanoLab (ATK-VNL) package. The adsorption energy ( E ads ), adsorption distance (D), charge transfer (ΔQ), density of states (DOS), and band structure have been investigated to confirm the adsorption of H2Se, H2Te, and PH3 on the surface of G, G–O, G–OH, and G–O–OH systems. The results of G revealed highest E ads for the case of H2Te with −0.143 eV. After the functionalization of G surface, the adsorption parameters reflected an improvement due to the presence of the functional groups. Particularly, the highest adsorption energy was found between G–O system and H2Se gas with E ads of −0.319 eV. The smallest adsorption distance was found between G–OH system and H2Se gas. The highest charge transfer was found for the case of H2Se gas adsorbed on G–O–OH system. By thorough comparison of the adsorption energy, adsorption distance, and charge transfer between G, G–O, G–OH, and G–O–OH systems and the three gases, G–O–OH system can be considered as a potential sensor for H2Se gas.

中文翻译:

基于氧化石墨烯的 H2Se、H2Te 和 PH3 传感的第一原理研究

摘要 检测有毒气体对于保护我们的健康和生活质量具有重要意义。在这项工作中,石墨烯 (G) 和具有三种不同修饰 (G-O、G-OH 和 G-O-OH) 的氧化石墨烯已被用于检测硒化氢 (H2Se)、碲化氢 (H2Te) 和膦(PH3) 分子基于 Atomistic ToolKit Virtual NanoLab (ATK-VNL) 包。研究了吸附能 ( E ads )、吸附距离 (D)、电荷转移 (ΔQ)、态密度 (DOS) 和能带结构,以确认 H2Se、H2Te 和 PH3 在 G 表面的吸附, G-O、G-OH 和 G-O-OH 系统。G 的结果揭示了 H2Te 情况下最高的 E ads,具有 -0.143 eV。G表面官能化后,由于官能团的存在,吸附参数有所改善。特别是,在 G-O 系统和 H2Se 气体之间发现了最高的吸附能,E ads 为 -0.319 eV。发现 G-OH 系统和 H2Se 气体之间的吸附距离最小。对于吸附在 G-O-OH 系统上的 H2Se 气体,发现了最高的电荷转移。通过对 G、G-O、G-OH 和 G-O-OH 系统与三种气体之间的吸附能、吸附距离和电荷转移进行彻底比较,G-O-OH 系统可以被认为是一种潜在的传感器用于 H2Se 气体。
更新日期:2020-10-01
down
wechat
bug