当前位置: X-MOL 学术Sustainability › 论文详情
Improved Predictive Control for an Asymmetric Multilevel Converter for Photovoltaic Energy
Sustainability ( IF 2.576 ) Pub Date : 2020-08-01 , DOI: 10.3390/su12156204
Patricio Gaisse; Javier Muñoz; Ariel Villalón; Rodrigo Aliaga

This article proposes a 27-level asymmetric cascade H-bridge multilevel topology for photovoltaic applications, which considers a predictive control strategy that allows minimization of the commutations of the converter. This proposal ensures a highly sinusoidal and stable photovoltaic injection when there are solar irradiance disturbances, generating a low distortion in the current waveform and low switching losses. To validate the performance of the control and the proposed topology, the dynamic model of the alternating current (AC) and direct current (DC) side system is first obtained, which is checked by computational simulations. Subsequently, the implementation of a master–slave control is carried out, focused on the control of DC voltage and AC current. The proposal is simulated, and the total harmonic distortion (THD) is obtained in the voltage and current waveforms. Undesired commutations, typical of the predictive control, are eliminated in the AC voltage waveform, and a proper DC voltage tracking is achieved for the high-power cell. In order to demonstrate the performance of the proposed control strategy, a low-power proof-of-concept prototype is implemented, in which the energy is injected to the grid, under the event of solar irradiance disturbances (with DC control).Then, the undesired switching in the main cell is eliminated, generating THDs in the voltage and current signal of 7.76% and 2.65%, respectively.
更新日期:2020-08-01

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
北大
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug