当前位置: X-MOL 学术Proc. Combust. Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the low-temperature oxidation chemistry of 1-butene and i-butene triggered by dimethyl ether
Proceedings of the Combustion Institute ( IF 3.4 ) Pub Date : 2020-07-31 , DOI: 10.1016/j.proci.2020.06.082
Xiaoyuan Zhang , Jiabiao Zou , Chuangchuang Cao , Weiye Chen , Jiuzhong Yang , Fei Qi , Yuyang Li

In order to better understand the low-temperature oxidation chemistry of alkenes, 1-butene and i-butene oxidation experiments triggered by dimethyl ether (DME) were conducted in a jet-stirred reactor at 790 Torr, 500–725 K and the equivalence ratio of 0.35. Low-temperature oxidation intermediates involved in alcoholic radical chemistry and allylic radical chemistry were detected by using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). To better interpret the experimental data, a kinetic model was proposed based on our low-temperature oxidation model of DME and comprehensive oxidation models of 1-butene and i-butene in literature. Based on present experimental results and modeling analysis, alcoholic radical chemistry initiated by OH addition is mainly responsible for the low-temperature chain propagation of butenes, since the Waddington mechanism plays a dominant role compared with the chain-branching pathways through the second O2 addition. Allylic radical+HO2 reactions producing alkenyl hydroperoxides and fuel+O2 serve as the major chain-branching and chain-termination pathways, respectively, and they are competitive in the negative temperature coefficient (NTC) region. In contrast, chain-branching pathways originating from allylic radical+O2 and alkyl-like radical+O2 reactions have little contribution to the OH formation. Comparison with the simulation results of butane/DME mixtures demonstrates that butenes can largely inhibit the reactivity of DME at low temperatures due to its reduced low-temperature chain-branching process. However, in the NTC region, butenes may not be good OH absorbents since the allylic radicals can convert HO2 to OH and consequently enhance the oxidation reactivity.



中文翻译:

探索1-丁烯的低温氧化化学和丁烯由二甲醚触发

为了更好地理解烯烃,1-丁烯和的低温氧化化学丁烯氧化实验由二甲醚(DME)触发是在一个喷流搅拌反应器中在790乇,500-725 K和当量比进行为0.35。通过使用同步加速器真空紫外光电离质谱法(SVUV-PIMS),检测了涉及醇自由基化学和烯丙基自由基化学的低温氧化中间体。为了更好地解释实验数据,基于我们的DME低温氧化模型以及1-丁烯和i的综合氧化模型,提出了动力学模型。-丁烯在文学中。根据目前的实验结果和模型分析,由OH加成引发的醇基化学反应主要负责丁烯的低温链传播,因为与通过第二次O 2加成的支链途径相比,Waddington机理起着主导作用。。产生烯基氢过氧化物的烯丙基自由基+ HO 2反应和燃料+ O 2分别是主要的支链和链终止途径,它们在负温度系数(NTC)区域具有竞争性。相反,源自烯丙基自由基+ O 2和烷基样自由基+ O 2的链支化途径反应对OH的形成几乎没有贡献。与丁烷/ DME混合物的模拟结果进行比较表明,丁烯由于其减少的低温链支化过程而可以在很大程度上抑制DME在低温下的反应性。然而,在NTC区域中,丁烯可能不是良好的OH吸收剂,因为烯丙基可以将HO 2转化为OH,因此提高了氧化反应性。

更新日期:2020-08-01
down
wechat
bug