当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Evaluation of CNT-COOH/MnO2/Fe3O4 nanocomposite for ibuprofen and paracetamol removal from aqueous solutions
Journal of Hazardous Materials ( IF 9.038 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jhazmat.2020.123528
Ildiko Lung; Maria-Loredana Soran; Adina Stegarescu; Ocsana Opris; Simona Gutoiu; Cristian Leostean; Mihaela Diana Lazar; Irina Kacso; Teofil-Danut Silipas; Alin Sebastian Porav

The nanocomposite CNT-COOH/MnO2/Fe3O4 was synthesized and characterized by different techniques, namely X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, magnetic measurement, point of zero charge and hydrophobicity index. Analyzes revealed the groups -COOH, MnO2 and Fe3O4 attached to the carbon nanotubes, the acidic character of the obtained nanocomposite and its stability. The surface area for the obtained nanocomposite was 114.2 m2 g−1. The prepared nanocomposite was used for adsorption of ibuprofen and paracetamol from aqueous solution. Isotherm, kinetic and thermodynamic parameters were determined for predicting the ibuprofen and paracetamol adsorption on synthetized nanocomposite. The equilibrium data obtained from adsorption were well represented by Langmuir model and kinetics data were well fitted by the pseudo-second order model. The maximum adsorption capacity obtained for ibuprofen and paracetamol was 103.093 mg g−1, 80.645 mg g−1 respectively. The thermodynamic analysis showed that the adsorption process for both pollutants was spontaneous and endothermic. The synthetized nanocomposite can be a suitable new absorbent for ibuprofen and paracetamol removal from aqueous solutions due to its high adsorbing capacity and it can be separated by an external magnetic field.

更新日期:2020-08-06

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
北大
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug