当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Correctors and error estimates for reaction–diffusion processes through thin heterogeneous layers in case of homogenized equations with interface diffusion
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.cam.2020.113126
Markus Gahn; Willi Jäger; Maria Neuss-Radu

In this paper, we construct approximations of the microscopic solution of a nonlinear reaction–diffusion equation in a domain consisting of two bulk-domains, which are separated by a thin layer with a periodic heterogeneous structure. The size of the heterogeneities and thickness of the layer are of order ϵ, where the parameter ϵ is small compared to the length scale of the whole domain. In the limit ϵ0, when the thin layer reduces to an interface Σ separating two bulk domains, a macroscopic model with effective interface conditions across Σ is obtained. Our approximations are obtained by adding corrector terms to the macroscopic solution, which take into account the oscillations in the thin layer and the coupling conditions between the layer and the bulk domains. To validate these approximations, we prove error estimates with respect to ϵ. Our approximations are constructed in two steps leading to error estimates of order ϵ12 and ϵ in the H1-norm.

更新日期:2020-08-01

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug