当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Evaluation of low-exergy heating and cooling systems and topology optimization for deep energy savings at the urban district level
Energy Conversion and Management ( IF 8.208 ) Pub Date : 2020-07-31 , DOI: 10.1016/j.enconman.2020.113106
Amy Allen; Gregor Henze; Kyri Baker; Gregory Pavlak

District energy systems have the potential to achieve deep energy savings by leveraging the density and diversity of loads in urban districts. However, planning and adoption of district thermal energy systems is hindered by the analytical burden and high infrastructure costs. It is hypothesized that network topology optimization would enable wider adoption of advanced (ambient temperature) district thermal energy systems, resulting in energy savings. In this study, energy modeling is used to compare the energy performance of “conventional” and “advanced” district thermal energy systems at the urban district level, and a partial exhaustive search is used to evaluate a heuristic for the topology optimization problem. For the prototypical district considered, advanced district thermal energy systems mated with low-exergy building heating and cooling systems achieved a source energy use intensity that was 49% lower than that of conventional systems. The minimal spanning tree heuristic was demonstrated to be effective for the network topology optimization problem in the context of a prototypical district, and contributes to mitigating the problem’s computational complexity. The work presented in this paper demonstrates the potential of advanced district thermal energy systems to achieve deep energy savings, and advances to addressing barriers to their adoption through topology optimization.

更新日期:2020-08-01

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug