当前位置: X-MOL 学术Chemosphere › 论文详情
Physiochemical assessment of environmental behaviors of herbicide atrazine in soils associated with its degradation and bioavailability to weeds
Chemosphere ( IF 5.778 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.chemosphere.2020.127830
Jintong Liu; Jing Hua Zhou; Qian Nan Guo; Li Ya Ma; Hong Yang

Atrazine residue in soil is one of the serious environmental problems and continues to risk ecosystem and human health. To address the environmental behaviors and dissipation of atrazine and better manage the application of atrazine in reality, we comprehensively investigated the adsorption and desorption, migration ability, and vanishing of atrazine in three distinct soils in China including Jiangxi (JX, pH 5.45, TOC 0.54%), Nanjing (NJ, pH 6.15, TOC 2.13%), and Yancheng (YC, pH 8.60, TOC 0.58%) soils. The atrazine adsorptive capacity to the soils was arranged in the order of NJ > YC > JX. The leaching assay with profiles of the soils showed strong migration, suggesting it had a high bioavailability to weeds and potential for underground water contamination. We further investigated the effects of environmental factors such as soil moisture, microbial activity and photolysis on atrazine degradation and showed that the degradation of atrazine in the soil mainly underwent the abiotic process, most likely through hydrolysis and photolysis-mediated mechanisms, and to less extend through soil microbial catabolism. Using HRLC-Q-TOF-MS/MS and by comparing the measured and theoretical m/z values and fragmentation data, ten metabolites comprising eight degraded products and two conjugates were characterized. Atrazine existing in the soils and sprayed coordinately blocked the growth of three common weeds, which prompted us to use the minimal atrazine in practice to control the waste of the pesticide and its impact on the environment. Overall, our work provided an insight into the mechanisms for the degradation of atrazine residues in the soils and contributed to the environmental risk assessment of the pesticide and management in its application control in the crop rotation and safe production.

更新日期:2020-08-04

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug