当前位置: X-MOL 学术Int. J. Chem. React. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium
International Journal of Chemical Reactor Engineering ( IF 1.6 ) Pub Date : 2020-07-31 , DOI: 10.1515/ijcre-2020-0019
Dulce J. Hernández-Melchor 1 , Beni Camacho-Pérez 2 , Elvira Ríos-Leal 3 , Jesus Alarcón-Bonilla 2 , Pablo A. López-Pérez 4
Affiliation  

Abstract This study was aimed at finding the optimal conditions for hydrogen production based on statistical experiments and using a simulation approach. A Plackett–Burman design and steepest ascent were used to screen the key factors to obtain the best hydrogen concentration. According to the regression analysis, cysteine, acetate, and aeration had the best effect. The optimal conditions, using the method of steepest ascent, were aeration (0.125 L/min), acetate (200 mg/L), cysteine (498 mg/L). Once this was determined, an experiment with more than two factors was considered. The combinations: acetate + cysteine without aeration and cysteine without aeration increased hydrogen concentration. These last two criteria were used to validate the dynamic model based on unstructured kinetics. Biomass, nitrogen, acetate, and hydrogen concentrations were monitored. The proposed model was used to perform the multi-objective optimization for various desired combinations. The simultaneous optimization for a minimum ratio of cysteine-acetate improved the concentration of hydrogen to 20 mg/L. Biomass optimized the concentration of hydrogen to 11.5 mg/L. The simultaneous optimization of reaction time (RT) and cysteine improved hydrogen concentration to 28.19 mg/L. The experimental hydrogen production was 11.4 mg/L at 24 h under discontinuous operation. Finally, the proposed model and the optimization methodology calculated a higher hydrogen concentration than the experimental data.

中文翻译:

使用光合作用联合体模拟产氢的建模和多目标优化

摘要 本研究旨在基于统计实验和模拟方法寻找制氢的最佳条件。Plackett-Burman 设计和最陡上升用于筛选获得最佳氢气浓度的关键因素。根据回归分析,半胱氨酸、醋酸盐和曝气效果最好。使用最陡上升法的最佳条件是曝气 (0.125 L/min)、醋酸盐 (200 mg/L)、半胱氨酸 (498 mg/L)。一旦确定了这一点,就考虑进行具有两个以上因素的实验。组合:乙酸盐+半胱氨酸不通气和半胱氨酸不通气增加氢浓度。最后两个标准用于验证基于非结构化动力学的动态模型。生物质、氮、醋酸盐、并监测氢气浓度。所提出的模型用于对各种所需组合执行多目标优化。同时优化半胱氨酸-乙酸盐的最小比例将氢气浓度提高到 20 mg/L。生物质将氢气浓度优化为 11.5 mg/L。反应时间 (RT) 和半胱氨酸的同时优化将氢气浓度提高到 28.19 mg/L。在不连续操作下,24 小时实验氢气产量为 11.4 mg/L。最后,所提出的模型和优化方法计算出比实验数据更高的氢浓度。同时优化半胱氨酸-乙酸盐的最小比例将氢气浓度提高到 20 mg/L。生物质将氢气浓度优化为 11.5 mg/L。反应时间 (RT) 和半胱氨酸的同时优化将氢气浓度提高到 28.19 mg/L。在不连续操作下,24 小时的实验氢气产量为 11.4 mg/L。最后,所提出的模型和优化方法计算出比实验数据更高的氢浓度。同时优化半胱氨酸-乙酸盐的最小比例将氢气浓度提高到 20 mg/L。生物质将氢气浓度优化为 11.5 mg/L。反应时间 (RT) 和半胱氨酸的同时优化将氢气浓度提高到 28.19 mg/L。在不连续操作下,24 小时实验氢气产量为 11.4 mg/L。最后,所提出的模型和优化方法计算出比实验数据更高的氢浓度。
更新日期:2020-07-31
down
wechat
bug