当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens [Biochemistry]
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.412 ) Pub Date : 2020-07-30 , DOI: 10.1073/pnas.2005327117
Yifan Wang, Kathy Fange Liu, Yu Yang, Ian Davis, Aimin Liu

The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolved in crystallo reactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.

更新日期:2020-07-31

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然科研线上培训服务
ACS ES&T Engineering
自然职场线上招聘会
ACS ES&T Water
产业、创新与基础设施
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
北大
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug