当前位置: X-MOL 学术Adv. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management.
Advances in Colloid and Interface Science ( IF 15.6 ) Pub Date : 2020-07-31 , DOI: 10.1016/j.cis.2020.102226
Elham Alehosseini 1 , Seid Mahdi Jafari 1
Affiliation  

Today, the use of phase change materials (PCMs) with remarkable properties for energy storage and development of engineering systems is an extremely important topic, due to enhanced demand for energy consumption. PCMs could be generally subdivided into solid–liquid, liquid–gas, solid–gas, and solid–solid groups. It should be noted that since there is no single excellent PCM that comprises all the suitable physical, chemical, kinetic, thermal, and economic properties, PCMs could be improved by incorporating some additives, modifying PCM structures, and optimizing the storage systems. Nanoencapsulation of PCMs, as an effective technique, can increase their thermal conductivity, barricades their leak during the melting operation, and their possible interactions with the surrounding matrix. Furthermore, there are several methods for fabricating nanocapsules loaded with PCMs including chemical (i.e., emulsion polymerization, mini-emulsion polymerization, in situ polymerization, and interfacial polymerization), physicochemical (sol–gel entrapment), and physicomechanical techniques (electrohydrodynamic processes). Accordingly, the energy storage and release of nanoencapsulated PCMs has been become an important field in many applications such as electronic devices, food industry, buildings, solar energy storage, heat exchangers, packed bed designs, space systems, textiles, etc. This study has been focused on various PCMs, their nanoencapsulation methods, phase change fibers, as well as their potential applications in energy storing and management goals in various fields.



中文翻译:

相变材料(PCM)的纳米封装及其在能量存储和管理的各个领域中的应用。

如今,由于对能量消耗的需求增加,因此使用具有显着性能的相变材料(PCM)进行能量存储和工程系统开发已成为极为重要的主题。PCM通常可以细分为固-液,液-气,固-气和固-固组。应该注意的是,由于没有一个包含所有合适的物理,化学,动力学,热和经济性质的优异的PCM,可以通过加入一些添加剂,修改PCM结构和优化存储系统来改善PCM。PCM的纳米封装是一种有效的技术,可以提高其导热性,阻止其在熔化过程中的泄漏以及它们与周围基质的相互作用。此外,有几种制备带有PCM的纳米胶囊的方法,包括化学方法(例如乳液聚合,微乳液聚合,原位聚合和界面聚合),物理化学方法(溶胶-凝胶截留)和物理机械技术(电流体动力学方法)。因此,纳米封装的PCM的能量存储和释放已成为许多应用的重要领域,例如电子设备,食品工业,建筑,太阳能存储,热交换器,填充床设计,空间系统,纺织品等。一直专注于各种PCM,其纳米封装方法,相变光纤以及它们在各个领域的能量存储和管理目标中的潜在应用。微乳液聚合,原位聚合和界面聚合),物理化学(溶胶-凝胶截留)和物理机械技术(电动流体动力学过程)。因此,纳米封装的PCM的能量存储和释放已成为许多应用的重要领域,例如电子设备,食品工业,建筑,太阳能存储,热交换器,填充床设计,空间系统,纺织品等。一直专注于各种PCM,其纳米封装方法,相变光纤以及它们在各个领域的能量存储和管理目标中的潜在应用。微乳液聚合,原位聚合和界面聚合),物理化学(溶胶-凝胶截留)和物理机械技术(电动流体动力学过程)。因此,纳米封装的PCM的能量存储和释放已成为许多应用的重要领域,例如电子设备,食品工业,建筑,太阳能存储,热交换器,填充床设计,空间系统,纺织品等。一直专注于各种PCM,其纳米封装方法,相变光纤以及它们在各个领域的能量存储和管理目标中的潜在应用。

更新日期:2020-08-08
down
wechat
bug