当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the Noah‐MP Model for Simulating Hydrothermal Regime of the Active Layer in the Permafrost Regions of the Qinghai‐Tibet Plateau
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-07-29 , DOI: 10.1029/2020jd032588
Xiangfei Li 1, 2 , Tonghua Wu 1 , Xiaofan Zhu 1 , Yingsha Jiang 3 , Guojie Hu 1 , Junming Hao 1, 2 , Jie Ni 1, 2 , Ren Li 1 , Yongping Qiao 1 , Cheng Yang 1, 2 , Wensi Ma 1, 2 , Amin Wen 1, 2 , Xue Ying 1, 2
Affiliation  

Soil hydrothermal regime of the active layer in the permafrost regions of the Qinghai‐Tibet Plateau (QTP) is important to the underlying permafrost and the climate change dynamics in Asia. However, a large bias still exists in current land surface models in the representation of soil temperature and moisture. This study assessed and augmented the Noah land surface model with multiparameterization options (Noah‐MP) for simulating soil hydrothermal dynamics at the Tanggula (alpine meadow) and Beiluhe (alpine swamp) stations located in the permafrost regions of the QTP. The results showed that the default Noah‐MP tended to underestimate soil temperature and moisture. Specifically, the default model overestimated the snow depth and duration due to the low snow sublimation rate. This resulted in a cold deviation in the soil temperature at two stations. Such underestimation was reduced by introducing a scheme that considered the sublimation loss from wind. Moreover, the remaining cold bias in the soil profiles of two stations was greatly resolved by a combined scheme of roughness length for heat (Z0h ) and undercanopy aerodynamic resistance (r a ,g ). A soil thermal conductivity scheme, which can produce more realistic soil thermal conductivity in frozen soil, further improved the deep soil temperature simulation. The consideration of soil organic matter could mitigate the underestimation of the shallow soil moisture to some extent, but this improvement was more obvious at the Tanggula station, which had coarser mineral soil than the Beiluhe station.

中文翻译:

改进Noah-MP模型以模拟青藏高原多年冻土区活动层的热液状态

青藏高原多年冻土地区活动层的土壤热液状态对于潜在的多年冻土和亚洲的气候变化动态很重要。但是,在目前的土地表面模型中,在代表土壤温度和湿度方面仍然存在很大的偏差。这项研究通过多参数化方案(Noah-MP)评估并增强了Noah地表模型,以模拟位于QTP多年冻土区的Tanggula(高山草甸)和Beiluhe(高山沼泽)站点的土壤热液动力学。结果表明,默认的Noah-MP往往会低估土壤温度和湿度。具体来说,由于降雪率低,默认模型高估了积雪深度和持续时间。这导致两个站的土壤温度出现冷偏差。通过引入考虑风升华损失的方案,可以减少这种低估。此外,两个站的土壤剖面中剩余的冷偏差通过热的粗糙长度组合方案(Z 0 h)和冠层下空气动力阻力(r ag)。一种土壤热导率方案,可以在冰冻的土壤中产生更真实的土壤热导率,从而进一步改善了深层土壤温度模拟。土壤有机质的考虑可以在一定程度上减轻对浅层土壤水分的低估,但是这种改善在唐古拉站更为明显,唐古拉站的矿物土壤比北陆河站要厚。
更新日期:2020-08-11
down
wechat
bug