当前位置: X-MOL 学术Lab. Anim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational fluid dynamics applied to the ventilation of small-animal laboratory cages.
Laboratory Animals ( IF 2.4 ) Pub Date : 2020-07-28 , DOI: 10.1177/0023677220937718
Ira Katz 1 , Kateryna Voronetska 2 , Mickaël Libardi 3 , Matthieu Chalopin 1 , Patricia Privat 3 , David J Esdaile 4 , Guillaume Mougin 2 , Géraldine Farjot 1 , Aude Milet 1
Affiliation  

Several studies based on in vivo or in vitro models have found promising results for the noble gas argon in neuroprotection against ischaemic pathologies. The development of argon as a medicinal product includes the requirement for toxicity testing through non-clinical studies. The long exposure period of animals (rats) during several days results in technical and logistic challenges related to the gas administration. In particular, a minimum of 10 air changes per hour (ACH) to maintain animal welfare results in extremely large volumes of experimental gas required if the gas is not recirculated. The difficulty with handling the many cylinders prompted the development of such a recirculation-based design. To distribute the recirculating gas to individually ventilated cages and monitor them properly was deemed more difficult than constructing a single large enclosure that will hold several open cages. To address these concerns, a computational fluid dynamics (CFD) analysis of the preliminary design was performed. A purpose-made exposure chamber was designed based on the CFD simulations. Comparisons of the simulation results to measurements of gas concentration at two cage positions while filling show that the CFD results compare well to these limited experiments. Thus, we believe that the CFD results are representative of the gas distribution throughout the enclosure. The CFD shows that the design provides better gas distribution (i.e. a higher effective air change rate) than predicted by 10 ACH.



中文翻译:

计算流体动力学应用于小动物实验室笼子的通风。

几项基于体内或体外模型的研究已经发现惰性气体氩在针对缺血性病理的神经保护方面的有希望的结果。氩气作为医药产品的开发包括通过非临床研究进行毒性测试的要求。动物(大鼠)在几天内的长时间暴露导致与气体管理相关的技术和后勤挑战。特别是,如果气体没有再循环,每小时至少 10 次换气 (ACH) 以维持动物福利会导致需要大量的实验气体。处理许多气缸的困难促使开发了这种基于再循环的设计。将再循环气体分配到单独通风的笼子并对其进行适当监控被认为比建造一个容纳多个开放笼子的大型围栏更困难。为了解决这些问题,对初步设计进行了计算流体动力学 (CFD) 分析。基于 CFD 模拟设计了一个特制的曝光室。模拟结果与填充时两个笼子位置的气体浓度测量结果的比较表明,CFD 结果与这些有限的实验相比很好。因此,我们相信 CFD 结果代表了整个外壳的气体分布。CFD 显示该设计提供了比 10 ACH 预测的更好的气体分布(即更高的有效空气变化率)。为了解决这些问题,对初步设计进行了计算流体动力学 (CFD) 分析。基于 CFD 模拟设计了一个特制的曝光室。模拟结果与填充时两个笼子位置的气体浓度测量结果的比较表明,CFD 结果与这些有限的实验相比很好。因此,我们相信 CFD 结果代表了整个外壳的气体分布。CFD 显示该设计提供了比 10 ACH 预测的更好的气体分布(即更高的有效空气变化率)。为了解决这些问题,对初步设计进行了计算流体动力学 (CFD) 分析。基于 CFD 模拟设计了一个特制的曝光室。模拟结果与填充时两个笼子位置的气体浓度测量结果的比较表明,CFD 结果与这些有限的实验相比很好。因此,我们相信 CFD 结果代表了整个外壳的气体分布。CFD 显示该设计提供了比 10 ACH 预测的更好的气体分布(即更高的有效空气变化率)。模拟结果与填充时两个笼子位置的气体浓度测量结果的比较表明,CFD 结果与这些有限的实验相比很好。因此,我们相信 CFD 结果代表了整个外壳的气体分布。CFD 显示该设计提供了比 10 ACH 预测的更好的气体分布(即更高的有效空气变化率)。模拟结果与填充时两个笼子位置的气体浓度测量结果的比较表明,CFD 结果与这些有限的实验相比很好。因此,我们相信 CFD 结果代表了整个外壳的气体分布。CFD 显示该设计提供了比 10 ACH 预测的更好的气体分布(即更高的有效空气变化率)。

更新日期:2020-07-29
down
wechat
bug