当前位置: X-MOL 学术Struct. Control Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Digital modeling on the nonlinear mapping between multi‐source monitoring data of in‐service bridges
Structural Control and Health Monitoring ( IF 5.4 ) Pub Date : 2020-07-29 , DOI: 10.1002/stc.2618
Hanwei Zhao 1, 2 , Youliang Ding 1, 2 , Aiqun Li 2, 3 , Wei Sheng 2 , Fangfang Geng 4
Affiliation  

Nonlinear mapping of the fuzzy relation exists between structural inputs and outputs, as well as between structural global and local response. It is difficult for the numerical simulation to introduce the nonlinear effects of the variability of loading effects and the uneven deterioration of structure. The big monitoring data make it feasible to mine these nonlinear effects, and the network of deep learning is a good tool to establish the nonlinear mapping model between the multi‐source monitoring data. Based on the temperature, strain, and dynamic displacement data from the structural health monitoring (SHM) system of an in‐service bridge, the deep learning regression network of long short‐term memory (LSTM) is designed and trained, which is used for modeling the nonlinear mapping between the structural input‐output and the structural global‐local response. The digital model of the nonlinear mapping of the temperature to temperature‐induced strain, dynamic displacement to vehicle‐induced strain, and vehicle‐induced strain to dynamic displacement is established by the deep learning of LSTM regression network. The established nonlinear mapping model can be used to recover the abnormal and missing data with multi‐source data, and it digitally linked the structural input‐output and the structural global‐local response. Then, the utilization of SHM data analytics will be enhanced, and the digital modeling for the in‐service state of the bridge structure will be fast implemented.

中文翻译:

在役桥梁多源监控数据之间非线性映射的数字建模

结构输入和输出之间以及结构全局响应和局部响应之间存在模糊关系的非线性映射。数值模拟很难引入载荷效应的可变性和结构的不均匀劣化的非线性效应。大量的监测数据使挖掘这些非线性效应成为可能,而深度学习网络是在多源监测数据之间建立非线性映射模型的良好工具。根据在役桥梁结构健康监测(SHM)系统中的温度,应变和动态位移数据,设计并训练了长短期记忆(LSTM)的深度学习回归网络,它用于对结构输入输出与结构全局局部响应之间的非线性映射进行建模。通过对LSTM回归网络的深度学习,建立了温度到温度引起的应变,动态位移到车辆引起的应变以及车辆引起的应变到动态位移的非线性映射的数字模型。建立的非线性映射模型可用于利用多源数据恢复异常和丢失的数据,并将结构的输入输出和结构的全局局部响应数字化链接。然后,将提高SHM数据分析的利用率,并快速实施桥梁结构的运行状态数字建模。通过对LSTM回归网络的深入学习,可以建立起车辆引起的应变的动态位移和车辆引起的应变到动态位移的关系。建立的非线性映射模型可用于利用多源数据恢复异常和丢失的数据,并将结构的输入输出和结构的全局局部响应数字化链接。然后,将提高SHM数据分析的利用率,并快速实施桥梁结构的运行状态数字建模。通过对LSTM回归网络的深度学习,可以建立起车辆引起的应变的动态位移和车辆引起的应变到动态位移的关系。建立的非线性映射模型可用于利用多源数据恢复异常和丢失的数据,并将结构的输入输出和结构的全局局部响应数字化链接。然后,将提高SHM数据分析的利用率,并快速实施桥梁结构的运行状态数字建模。它以数字方式将结构性投入产出与结构性全球局部反应联系起来。然后,将提高SHM数据分析的利用率,并快速实施桥梁结构的运行状态数字建模。它以数字方式将结构性投入产出与结构性全球局部反应联系起来。然后,将提高SHM数据分析的利用率,并快速实施桥梁结构的运行状态数字建模。
更新日期:2020-10-05
down
wechat
bug