当前位置: X-MOL 学术Harmful Algae › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability
Harmful Algae ( IF 6.6 ) Pub Date : 2020-07-29 , DOI: 10.1016/j.hal.2020.101850
Kathleen D. Cusick , Edith A. Widder

Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.



中文翻译:

生物发光和毒性是有害藻华的驱动因素:生态功能和遗传变异

鞭毛藻是具有重要适应策略的海洋微生物真核生物的重要生态组。具有讽刺意味的是,在考虑二者的生态学意义时,很少有鞭毛藻的两个特性,即毒素产生和生物发光,很少联系在一起。尽管构成某些最普遍和最常见的有害藻华(HAB)的鞭毛藻生物发光,但是这两个性状之间的分子和生态进化联系并没有引起人们的注意。在这里,我们讨论了生物化学和遗传学,生态功能,信号传导机制和进化的主要主题,并在两者之间找到了相似之处和联系。在17种主要的鞭毛藻毒素中,只有两种是由生物发光物质产生的:毒素(STX)和野毒素。其中,对STX进行了广泛的研究,包括STX生物合成基因的鉴定。尽管已经提出了许多有关生物发光和毒性的生态进化作用的理论,但普遍的共识是这两者都具有放牧威慑作用。因此,生物发光和毒性都可以帮助HAB引发,因为它们可以减轻HAB物种的放牧压力。在我们的理解中,一个很大的空白是自然开花种群之间的遗传变异性,因为有毒和无毒菌株都是从同一地理位置分离出来的。生物发光也是如此,因为存在相同物种的生物发光和非生物发光菌株。最近的证据表明绽放不是单克隆事件,因此需要对STX +和STX-物种的序列分析有更高水平的了解,以了解亚种群之间这些性状的遗传变异性以及细胞获得或丧失性状的机制。表明毒性所需的关键基因丢失了而不是获得了。虽然天然HAB亚群中生物发光和毒性的遗传变异性程度仍然未知,但为了深入了解驱动HAB进化的分子机制和环境参数,需要探索这一领域。对STX +和STX-物种的序列分析表明,毒性所需的关键基因丢失了而不是获得了。虽然天然HAB亚群中生物发光和毒性的遗传变异性程度仍然未知,但为了深入了解驱动HAB进化的分子机制和环境参数,需要探索这一领域。对STX +和STX-物种的序列分析表明,毒性所需的关键基因丢失了而不是获得了。虽然天然HAB亚群中生物发光和毒性的遗传变异性程度仍然未知,但为了深入了解驱动HAB进化的分子机制和环境参数,需要探索这一领域。

更新日期:2020-07-29
down
wechat
bug