当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pollutant photo-conversion strategy to produce hydrogen green fuel and valuable sulfur element using H2S feed and nanostructured alloy photocatalysts: Ni-dopant effect, energy diagram and photo-electrochemical characterization
Chemical Engineering Research and Design ( IF 3.9 ) Pub Date : 2020-07-29 , DOI: 10.1016/j.cherd.2020.07.024
Mohsen Lashgari , Majid Ghanimati

Design and synthesis of effective, eco-friendly, low-price semiconductor-based photocatalyst/solar-energy materials and their application for photocatalytic transformation of plentiful/perilous hazardous chemicals (e.g. H2S) into hydrogen green fuel and other valuable elements is a promising/sustainable strategy, which is highly in demand from environmental, energy and fuel as well as chemical and technological standpoints. To this end, herein, a set of new quaternary, Ni-doped n-type solid-solution (alloy) semiconductor compounds, viz. NixIIFe0.2IIIZn0.7xIIS (x = 0, 0.02, 0.05 and 0.1) were synthesized through a facile one-pot hydrothermal route and employed for the photocatalytic conversion of alkaline H2S medium (pH = 11) to hydrogen fuel and elemental sulfur. The investigations revealed that by adding Ni into the ternary photocatalyst-base (Fe0.2Zn0.7S), with decreasing the size of constituting nanoparticles and enlarging the photocatalyst surface area, the absorption intensity was strengthened. Among the materials under consideration, the lowest charge recombination (photoluminescence emission), highest photocurrent, and greatest displacement in open circuit and flat-band potentials were witnessed for x = 0.05, the photocatalyst with maximum performance to produce H2 and S. Finally, by using photoelectrochemical data and depicting the energy-diagram of system, a detailed discussion was provided and the phenomenon was justified from physicochemical viewpoint.



中文翻译:

使用H 2 S进料和纳米结构合金光催化剂生产氢绿色燃料和有价值的硫元素的污染物光转化策略:镍掺杂效应,能谱和光电化学特性

设计,合成有效,环保,廉价的基于半导体的光催化剂/太阳能材料,并将其用于大量/危险化学品(例如H 2 S)的光催化转化为氢绿色燃料和其他有价值的元素有前景/可持续的战略,从环境,能源和燃料以及化学和技术的角度来看,这都是非常需要的。为此,在本文中,提出了一组新的,季杂的,Ni掺杂的n型固溶(合金)半导体化合物。ñ一世XIIFË0.2一世一世一世žñ0.7-X一世一世小号x  = 0、0.02、0.05和0.1)通过一种简便的一锅水热法合成,用于碱性H 2 S介质(pH = 11)的光催化转化为氢燃料和元素硫。研究表明,通过在三元光催化剂基料中添加Ni(0.20.7小号),随着组成纳米颗粒尺寸的减小和光催化剂表面积的增加,吸收强度得到增强。在考虑中的材料,最低电荷重组(光致发光发射),最高光电流,以及最大的位移在开路平带电位被目睹了X  = 0.05,具有最高性能的光催化剂生成H 2和S.最后,通过使用光电化学数据并描绘了系统的能量图,提供了详细的讨论,并从理化角度证明了该现象的合理性。

更新日期:2020-07-29
down
wechat
bug