当前位置: X-MOL 学术Measurement › 论文详情
A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic
Measurement ( IF 3.364 ) Pub Date : 2020-07-28 , DOI: 10.1016/j.measurement.2020.108288
Mohamed Loey; Gunasekaran Manogaran; Mohamed Hamed N. Taha; Nour Eldeen M. Khalifa

The coronavirus COVID-19 pandemic is causing a global health crisis. One of the effective protection methods is wearing a face mask in public areas according to the World Health Organization (WHO). In this paper, a hybrid model using deep and classical machine learning for face mask detection will be presented. The proposed model consists of two components. The first component is designed for feature extraction using Resnet50. While the second component is designed for the classification process of face masks using decision trees, Support Vector Machine (SVM), and ensemble algorithm. Three face masked datasets have been selected for investigation. The Three datasets are the Real-World Masked Face Dataset (RMFD), the Simulated Masked Face Dataset (SMFD), and the Labeled Faces in the Wild (LFW). The SVM classifier achieved 99.64% testing accuracy in RMFD. In SMFD, it achieved 99.49%, while in LFW, it achieved 100% testing accuracy.

更新日期:2020-08-01

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug