当前位置: X-MOL 学术Fibers Polym. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fully Bio-based Micro-cellulose Incorporated Poly(butylene 2,5-furandicarboxylate) Transparent Composites: Preparation and Characterization
Fibers and Polymers ( IF 2.5 ) Pub Date : 2020-07-27 , DOI: 10.1007/s12221-020-9610-8
Sakil Mahmud , Yu Long , Muhammad Abu Taher , Han Hu , Ruoyu Zhang , Jin Zhu

Poly(butylene 2,5-furandicarboxylate) (PBF) derived from 2,5-furandicarboxylic acid (FDCA) is an emerging bio-based alipharomatic polyester that is expected to replace its fossil-based terephthalate and naphthate homologues. PBF holds excellent gas barrier properties, but its slow rate of crystallization might restrict wider applications. To improve the rate of crystalization, it was melt-blended with crystalline micro-cellulose (CMC) to prepare a composite through twin-screw extrusion. To ensure environmental friendly conditions, neither chemicals to modify fibers nor compatibilizers to improve the filler/matrix interaction were used. Size exclusion chromatography (SEC), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to characterize the composite. It was observed that a longer blending duration (cyclic mode) leads to a greater reduction in molecular weight (Mw) in the presence of CMC, which can be avoided by using a shorter blending duration (direct mode). The mechanical properties of the composite showed an increase in Young’s modulus by approximately 23 % and 36 % with respect to reference PBF for the cyclic and direct mode respectively. It was further observed that, although the elongation at break and tensile strength has decreased, it has improved gas barrier properties. Thermal analysis shows faster nucleation of PBF in the presence of CMC with a minor effect on its thermal degradation.



中文翻译:

完全生物基的微纤维素结合的聚(2,5-呋喃二甲酸丁二酯)透明复合材料:制备和表征

衍生自2,5-呋喃二甲酸(FDCA)的聚(2,5-呋喃二甲酸丁二酯)(PBF)是一种新兴的生物基脂族聚酯,有望取代其化石基对苯二甲酸酯和萘酸酯同系物。PBF具有出色的阻气性,但其缓慢的结晶速度可能会限制更广泛的应用。为了提高结晶速率,将其与晶体微纤维素(CMC)熔融共混,以通过双螺杆挤出制备复合材料。为了确保环境友好的条件,既没有使用化学改性纤维,也没有使用增容剂来改善填料/基体的相互作用。尺寸排阻色谱(SEC),傅立叶变换红外(FTIR)光谱,扫描电子显微镜(SEM),差示扫描量热法(DSC),使用热重分析(TGA)和X射线衍射(XRD)来表征复合材料。观察到更长的混合持续时间(循环模式)导致在CMC存在下分子量(Mw)的更大降低,这可以通过使用较短的混合持续时间(直接模式)来避免。相对于循环和直接模式下的参考PBF,复合材料的机械性能显示出杨氏模量分别增加了约23%和36%。进一步观察到,尽管断裂伸长率和拉伸强度降低,但是其具有改善的阻气性。热分析显示在CMC存在下PBF的成核速度更快,对其热降解影响较小。观察到更长的混合持续时间(循环模式)导致在CMC存在下分子量(Mw)的更大降低,这可以通过使用较短的混合持续时间(直接模式)来避免。相对于循环和直接模式下的参考PBF,复合材料的机械性能显示出杨氏模量分别增加了约23%和36%。进一步观察到,尽管断裂伸长率和拉伸强度降低,但是其具有改善的阻气性。热分析显示在CMC存在下PBF的成核速度更快,对其热降解影响较小。观察到更长的混合持续时间(循环模式)导致在CMC存在下分子量(Mw)的更大降低,这可以通过使用较短的混合持续时间(直接模式)来避免。相对于循环和直接模式下的参考PBF,复合材料的机械性能显示出杨氏模量分别增加了约23%和36%。进一步观察到,尽管断裂伸长率和拉伸强度降低,但是其具有改善的阻气性。热分析显示,在CMC存在下,PBF的成核速度更快,对其热降解影响较小。相对于循环和直接模式下的参考PBF,复合材料的机械性能显示出杨氏模量分别增加了约23%和36%。进一步观察到,尽管断裂伸长率和拉伸强度降低,但是其具有改善的阻气性。热分析显示,在CMC存在下,PBF的成核速度更快,对其热降解影响较小。相对于循环和直接模式下的参考PBF,复合材料的机械性能显示出杨氏模量分别增加了约23%和36%。进一步观察到,尽管断裂伸长率和拉伸强度降低,但是其具有改善的阻气性。热分析显示在CMC存在下PBF的成核速度更快,对其热降解影响较小。

更新日期:2020-07-28
down
wechat
bug