Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface currents in the Alderney Race from high-frequency radar measurements and three-dimensional modelling
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences ( IF 5 ) Pub Date : 2020-07-27 , DOI: 10.1098/rsta.2019.0494
G Lopez 1 , A-C Bennis 1 , Y Barbin 2 , A Sentchev 3 , L Benoit 1 , L Marié 4
Affiliation  

Two weeks of high-frequency radar measurements collected at the Alderney Race are compared with the results of a three-dimensional fully coupled wave–current model. Spatial current measurements are rare in this site, otherwise well investigated through modelling. Thus, the radar measurements offer a unique opportunity to examine the spatial reliability of numerical results, and can help to improve our understanding of the complex currents in the area. Comparison of observed and modelled surface current velocities showed a good agreement between the methods, represented by root mean squared errors ranging from 14 to 40 cm s−1 and from 18 to 60 cm s−1 during neap and spring tides, respectively. Maximum errors were found in shallow regions with consistently high current velocities, represented by mean neap and spring magnitudes of 1.25 m s−1 and 2.7 m s−1, respectively. Part of the differences between modelled and observed surface currents in these areas are thought to derive from limitations in the k-epsilon turbulence model used to simulate vertical mixing, when the horizontal turbulent transport is high. In addition, radar radial currents showed increased variance over the same regions, and might also be contributing to the discrepancies found. Correlation analyses yielded magnitudes above 0.95 over the entire study area, with better agreement during spring than during neap tides, probably because of an increase in the phase lag between radar and model velocities during the latter. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.

中文翻译:

来自高频雷达测量和三维建模的奥尔德尼竞赛中的表面电流

在奥尔德尼赛马场收集的两周高频雷达测量结果与三维全耦合波-流模型的结果进行了比较。空间电流测量在该站点中很少见,否则通过建模进行了很好的研究。因此,雷达测量提供了一个独特的机会来检查数值结果的空间可靠性,并有助于提高我们对该地区复杂洋流的理解。观察到的和模拟的表面流速度的比较表明这些方法之间有很好的一致性,分别由小潮和大潮期间的均方根误差范围为 14 至 40 cm s-1 和 18 至 60 cm s-1 表示。最大误差出现在具有持续高电流速度的浅层区域,由 1.25 m s-1 和 2 的平均 neap 和弹簧幅度表示​​。分别为 7 m s−1。这些区域中模拟和观察到的表面流之间的部分差异被认为是由于用于模拟垂直混合的 k-epsilon 湍流模型的局限性,当水平湍流传输很高时。此外,雷达径向电流在相同区域显示出增加的差异,这也可能是导致发现差异的原因。相关分析在整个研究区域产生了 0.95 以上的震级,在春季比在小潮期间具有更好的一致性,可能是因为后者期间雷达和模型速度之间的相位滞后增加。本文是主题问题“奥尔德尼岛竞赛中潮汐动力学和潮汐能收集的新见解”的一部分。这些区域中模拟和观察到的表面流之间的部分差异被认为是由于用于模拟垂直混合的 k-epsilon 湍流模型的局限性,当水平湍流传输很高时。此外,雷达径向电流在相同区域显示出增加的差异,这也可能是导致发现差异的原因。相关分析在整个研究区域产生了 0.95 以上的震级,在春季比在小潮期间具有更好的一致性,可能是因为后者期间雷达和模型速度之间的相位滞后增加。本文是主题问题“奥尔德尼岛竞赛中潮汐动力学和潮汐能收集的新见解”的一部分。这些区域中模拟和观察到的表面流之间的部分差异被认为是由于用于模拟垂直混合的 k-epsilon 湍流模型的局限性,当水平湍流传输很高时。此外,雷达径向电流在相同区域显示出增加的差异,这也可能是导致发现差异的原因。相关分析在整个研究区域产生了大于 0.95 的震级,在春季比在小潮期间具有更好的一致性,这可能是因为后者期间雷达和模型速度之间的相位滞后增加。本文是主题问题“奥尔德尼岛竞赛中潮汐动力学和潮汐能收集的新见解”的一部分。
更新日期:2020-07-27
down
wechat
bug