当前位置: X-MOL 学术Chem. Res. Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanistic Insights into the Cytotoxicity of Graphene Oxide Derivatives in Mammalian Cells.
Chemical Research in Toxicology ( IF 4.1 ) Pub Date : 2020-07-27 , DOI: 10.1021/acs.chemrestox.9b00391
Phillip Lu 1 , Alireza Zehtab Yazdi 1 , Xiao Xia Han 1 , Khalsa Al Husaini 1 , Jessica Haime 1 , Naomi Waye 1 , P Chen 1
Affiliation  

Graphene oxide derivatives (GODs) have superb physical/chemical properties with promise for applications in biomedicine. Shape, size, and chemistry of the GODs are identified as the key parameters that impact any biological system. In this work, the GODs with a wide range of shapes (sheets, helical/longitudinal ribbons, caps, dots), sizes (10 nm to 20 μm), and chemistry (partially to fully oxidized) are synthesized, and their cytotoxicity in normal cells (NIH3T3) and colon cancer cells (HCT116) are evaluated. The mechanisms by which the GODs induce cytotoxicity are comprehensively investigated, and the toxic effects of the GODs on the NIH3T3 and the HCT116 cells are compared. While the GODs show no toxicity under the size of 50 nm, they impose moderate toxic effects at the sizes of 100 nm to 20 μm (max viability >57%). For the GODs with the similar size (100–200 nm), the helical ribbon-like structure is found to be much less toxic than the longitudinal ribbon structure (max viability 83% vs 18%) and the tubular structure (0% viability for the oxidized carbon nanotubes). It is also evident that the level of oxidation of the GOD is inversely related to the toxicity. Although the extent of GOD-induced cytotoxicity (reduction of cell viability) to the two cell lines is similar, their toxicity mechanisms are interestingly found to be substantially different. In the HCT116 cancer cells, cell membrane leakage leads to DNA damage followed by cell death, whereas in the NIH3T3 normal cells, increases in oxidative stress and physical interference between the GODs and the cells are identified as the main toxicity sources.

中文翻译:

对氧化石墨烯衍生物在哺乳动物细胞中的细胞毒性的机理洞察。

氧化石墨烯衍生物 (GOD) 具有出色的物理/化学性质,有望在生物医学中应用。GOD 的形状、大小和化学性质被确定为影响任何生物系统的关键参数。在这项工作中,合成了具有多种形状(片状、螺旋/纵向带状、帽状、点状)、大小(10 nm 至 20 μm)和化学性质(部分至完全氧化)的 GOD,并且它们在正常情况下的细胞毒性评估细胞 (NIH3T3) 和结肠癌细胞 (HCT116)。全面研究了GODs诱导细胞毒性的机制,并比较了GODs对NIH3T3和HCT116细胞的毒性作用。虽然 GOD 在 50 nm 的大小下没有显示出毒性,但它们在 100 nm 到 20 μm 的大小(最大生存力 >57%)时会产生中等毒性作用。对于具有相似尺寸(100-200 nm)的 GOD,发现螺旋带状结构的毒性远低于纵向带状结构(最大存活率 83% vs 18%)和管状结构(0% 存活率)氧化的碳纳米管)。很明显,GOD 的氧化水平与毒性成反比。尽管 GOD 诱导的细胞毒性(细胞活力降低)对两种细胞系的程度相似,但有趣的是发现它们的毒性机制有很大不同。在 HCT116 癌细胞中,细胞膜渗漏导致 DNA 损伤,随后细胞死亡,而在 NIH3T3 正常细胞中,氧化应激的增加和 GOD 与细胞之间的物理干扰被确定为主要毒性来源。发现螺旋带状结构比纵向带状结构(最大存活率 83% 对 18%)和管状结构(氧化碳纳米管的存活率为 0%)毒性小得多。很明显,GOD 的氧化水平与毒性成反比。尽管 GOD 诱导的细胞毒性(细胞活力降低)对两种细胞系的程度相似,但有趣的是发现它们的毒性机制有很大不同。在 HCT116 癌细胞中,细胞膜渗漏导致 DNA 损伤,随后细胞死亡,而在 NIH3T3 正常细胞中,氧化应激的增加和 GOD 与细胞之间的物理干扰被确定为主要毒性来源。发现螺旋带状结构比纵向带状结构(最大存活率 83% 对 18%)和管状结构(氧化碳纳米管的存活率为 0%)毒性小得多。很明显,GOD 的氧化水平与毒性成反比。尽管 GOD 诱导的细胞毒性(细胞活力降低)对两种细胞系的程度相似,但有趣的是发现它们的毒性机制有很大不同。在 HCT116 癌细胞中,细胞膜渗漏导致 DNA 损伤,随后细胞死亡,而在 NIH3T3 正常细胞中,氧化应激的增加和 GOD 与细胞之间的物理干扰被确定为主要毒性来源。
更新日期:2020-09-21
down
wechat
bug