当前位置: X-MOL 学术Nat. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Persistence of soil organic carbon caused by functional complexity
Nature Geoscience ( IF 18.3 ) Pub Date : 2020-07-27 , DOI: 10.1038/s41561-020-0612-3
Johannes Lehmann , Colleen M. Hansel , Christina Kaiser , Markus Kleber , Kate Maher , Stefano Manzoni , Naoise Nunan , Markus Reichstein , Joshua P. Schimel , Margaret S. Torn , William R. Wieder , Ingrid Kögel-Knabner

Soil organic carbon management has the potential to aid climate change mitigation through drawdown of atmospheric carbon dioxide. To be effective, such management must account for processes influencing carbon storage and re-emission at different space and time scales. Achieving this requires a conceptual advance in our understanding to link carbon dynamics from the scales at which processes occur to the scales at which decisions are made. Here, we propose that soil carbon persistence can be understood through the lens of decomposers as a result of functional complexity derived from the interplay between spatial and temporal variation of molecular diversity and composition. For example, co-location alone can determine whether a molecule is decomposed, with rapid changes in moisture leading to transport of organic matter and constraining the fitness of the microbial community, while greater molecular diversity may increase the metabolic demand of, and thus potentially limit, decomposition. This conceptual shift accounts for emergent behaviour of the microbial community and would enable soil carbon changes to be predicted without invoking recalcitrant carbon forms that have not been observed experimentally. Functional complexity as a driver of soil carbon persistence suggests soil management should be based on constant care rather than one-time action to lock away carbon in soils.



中文翻译:

功能复杂性导致土壤有机碳的持久性

土壤有机碳管理有潜力通过减少大气中的二氧化碳来缓解气候变化。为了有效发挥作用,此类管理必须考虑到影响碳存储和在不同时空范围内再排放的过程。要实现这一点,就需要我们在概念上取得进展,以将碳动力学从过程发生的规模与决策的规模联系起来。在这里,我们建议可以通过分解者的视角来理解土壤碳的持久性,这是功能复杂性的结果,该功能复杂性是分子多样性和组成的时空变化之间的相互作用所致。例如,仅位于同一位置就可以确定分子是否被分解,水分的快速变化导致有机物的运输并限制了微生物群落的适应性,而更大的分子多样性可能会增加代谢的需求,从而可能限制其分解。这种概念上的转变解释了微生物群落的新出现行为,将能够预测土壤碳的变化而无需调用实验上未观察到的顽固碳形态。功能复杂性是造成土壤碳持久性的驱动因素,这表明土壤管理应基于持续的关怀,而不是一次性行动来锁定土壤中的碳。这种概念上的转变解释了微生物群落的新出现行为,将能够预测土壤碳的变化而无需调用实验上未观察到的顽固碳形态。功能复杂性是造成土壤碳持久性的驱动因素,这表明土壤管理应基于持续的关怀,而不是一次性行动来锁定土壤中的碳。这种概念上的转变解释了微生物群落的新出现行为,将能够预测土壤碳的变化而无需调用实验上未观察到的顽固碳形态。功能复杂性是造成土壤碳持久性的驱动因素,这表明土壤管理应基于持续的关怀,而不是一次性行动来锁定土壤中的碳。

更新日期:2020-07-27
down
wechat
bug