当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-controlled field-effect micromixing using AC electroosmosis
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2020-07-27 , DOI: 10.1038/s41378-020-0166-y
Paresa Modarres 1 , Maryam Tabrizian 1, 2
Affiliation  

The exploration and application of electrokinetic techniques in micro total analysis systems have become ubiquitous in recent years, and scientists are expanding the use of such techniques in areas where comparable active or passive methods are not as successful. In this work, for the first time, we utilize the concept of AC electroosmosis to design a phase-controlled field-effect micromixer that benefits from a three-finger sinusoidally shaped electrodes. Analogous to field-effect transistor devices, the principle of operation for the proposed micromixer is governed by the source-gate and source-drain voltage potentials that are modulated by introducing a phase lag between the driving electrodes. At an optimized flow rate and biasing scheme, we demonstrate that the source, gate, and drain voltage phase relations can be configured such that the micromixer switches from an unmixed state (phase shift of 0°) to a mixed state (phase shift of 180°). High mixing efficiencies beyond 90% was achieved at a volumetric flow rate of 4 µL/min corresponding to ~13.9 mm/s at optimized voltage excitation conditions. Finally, we employed the proposed micromixer for the synthesis of nanoscale lipid-based drug delivery vesicles through the process of electrohydrodynamic-mediated nanoprecipitation. The phase-controlled electrohydrodynamic mixing utilized for the nanoprecipitation technique proved that nanoparticles of improved monodispersity and concentration can be produced when mixing efficiency is enhanced by tuning the phase shifts between electrodes.



中文翻译:

使用交流电渗的相控场效应微混合

近年来,电动技术在微全分析系统中的探索和应用变得无处不在,科学家们正在扩大此类技术在可比较的主动或被动方法不那么成功的领域的使用。在这项工作中,我们首次利用交流电渗的概念设计了一种相控场效应微混合器,该微混合器受益于三指正弦形状的电极。类似于场效应晶体管器件,所提出的微混合器的工作原理由源极-栅极和源极-漏极电压电位控制,这些电位通过在驱动电极之间引入相位滞后进行调制。在优化的流速和偏置方案下,我们证明了源、门、和漏极电压相位关系可以被配置为使得微混合器从未混合状态(0°的相移)切换到混合状态(180°的相移)。在 4 µL/min 的体积流速下实现了超过 90% 的高混合效率,对应于优化电压激励条件下的 ~13.9 mm/s。最后,我们采用所提出的微混合器通过电流体动力学介导的纳米沉淀过程合成纳米级脂质基药物递送囊泡。用于纳米沉淀技术的相控电流体动力学混合证明,当通过调节电极之间的相移来提高混合效率时,可以生产出具有改进的单分散性和浓度的纳米颗粒。

更新日期:2020-07-27
down
wechat
bug