当前位置: X-MOL 学术Batteries Supercaps › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring Lithium Storage Mechanism and Cycling Stability of Bi2Mo3O12 Binary Metal Oxide Anode Composited with Ti3C2 MXene
Batteries & Supercaps ( IF 5.7 ) Pub Date : 2020-07-27 , DOI: 10.1002/batt.202000108
Kai Tian, Hui Lu, Liangmin Bu, Xue Huang, Chao‐Lung Chiang, Shiqi Yang, Yue Zhao, Yan‐Gu Lin, Jianqing Zhao, Lijun Gao

Metal oxides are widely evaluated as high‐capacity anode candidates for practical lithium ion battery applications, owing to their attractive volumetric and gravimetric capacities compared with the traditional graphite anode. Synergistic effects on improving electrochemical performance of binary metal oxide anodes have been increasingly reported via different working mechanisms for lithium storage instead of simple combination of two single components. Herein, we report on exploring lithium storage mechanism in Bi2Mo3O12 binary metal oxide for the first time as an anode material. In‐situ synchrotron X‐ray diffraction measurements are performed on this exotic material to elucidate lithium storage behaviors, coupled with voltage‐resolved cyclic voltammetry and ex‐situ X‐ray photoelectron spectroscopy analyses. The Bi2Mo3O12 anode undergoes an irreversible initial conversion reaction, resulting in metallic Bi and Li2MoO4 components through electrochemical lithiation. During successive cycling, these two components reversibly uptake and release Li ions through alloying/de‐alloying and intercalation/de‐intercalation reactions, by forming corresponding Li3Bi alloy and excessively‐lithiated Li2+xMoO4 derivative, respectively. Cycling stability of the Bi2Mo3O12 anode material is considerably enhanced by in‐situ composition with Ti3C2‐based MXene nanosheets. The Bi2Mo3O12@Ti3C2 composite anode material can deliver an initial charge capacity of approximately 846 mAh g−1 at 50 mA g−1 and retain at 227 mAh g−1 upon prolonged 1000 cycles at 2.5 A g−1 high charge/discharge current density. This work offers some insights into lithium storage mechanism and composite nanostructure design in Bi−Mo−O binary metal oxide anode towards enhanced electrochemical performance.

中文翻译:

Ti3C2 MXene复合Bi2Mo3O12二元金属氧化物阳极的储锂机理和循环稳定性研究

金属氧化物由于具有比传统石墨阳极更具吸引力的体积和重量容量,因此被广泛评估为实际锂离子电池应用中的高容量阳极候选材料。通过用于锂存储的不同工作机制而不是两个单一组分的简单组合,越来越多地报道了对改善二元金属氧化物阳极的电化学性能的协同作用。本文中,我们首次报道了在Bi 2 Mo 3 O 12二元金属氧化物中作为负极材料探索锂存储机理的方法。原位对这种奇特的材料进行同步加速器X射线衍射测量,以阐明锂的存储行为,并结合电压分辨循环伏安法和非原位X射线光电子能谱分析。Bi 2 Mo 3 O 12阳极经历不可逆的初始转化反应,通过电化学锂化产生金属Bi和Li 2 MoO 4组分。在连续循环中,这两种成分通过形成相应的Li 3 Bi合金和过度锂化的Li 2+ x MoO,通过合金化/去合金化和插层/脱层反应可逆地吸收和释放锂离子。分别为4个导数。通过基于Ti 3 C 2的MXene纳米片的原位组成,可大大提高Bi 2 Mo 3 O 12阳极材料的循环稳定性。Bi 2 Mo 3 O 12 @Ti 3 C 2复合阳极材料可在50 mA g -1下提供约846 mAh g -1的初始充电容量,并在2.5 A g下延长1000次循环后可保持在227 mAh g -1-1高充电/放电电流密度。这项工作为Bi-Mo-O二元金属氧化物阳极的锂存储机理和复合纳米结构设计提供了一些见识,以提高电化学性能。
更新日期:2020-07-27
down
wechat
bug