当前位置: X-MOL 学术X-Ray Spectrom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Valence‐to‐core X‐ray emission spectroscopy of titanium compounds using energy dispersive detectors
X-Ray Spectrometry ( IF 1.2 ) Pub Date : 2020-07-27 , DOI: 10.1002/xrs.3183
Luis Miaja‐Avila 1 , Galen C. O'Neil 1 , Young Il Joe 1 , Kelsey M. Morgan 1 , Joseph W. Fowler 1 , William B. Doriese 1 , Brianna Ganly 2 , Deyu Lu 3 , Bruce Ravel 4 , Daniel S. Swetz 1 , Joel N. Ullom 1
Affiliation  

Funding information Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory, Grant/Award Number: DE-SC0012704; National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, Grant/Award Number: DE-AC02-05CH11231; NIST Innovations in Measurement Science Program; U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, Grant/ Award Number: DE-AC02-06CH11357 X-ray emission spectroscopy (XES) of transition metal compounds is a powerful tool for investigating the spin and oxidation state of the metal centers. Valence-to-core (vtc) XES is of special interest, as it contains information on the ligand nature, hybridization, and protonation. To date, most vtc-XES studies have been performed with high-brightness sources, such as synchrotrons, due to the weak fluorescence lines from vtc transitions. Here, we present a systematic study of the vtc-XES for different titanium compounds in a laboratory setting using an X-ray tube source and energy dispersive microcalorimeter sensors. With a full-width at half-maximum energy resolution of approximately 4 eV at the Ti Kβ lines, we measure the XES features of different titanium compounds and compare our results for the vtc line shapes and energies to previously published and newly acquired synchrotron data as well as to new theoretical calculations. Finally, we report simulations of the feasibility of performing time-resolved vtc-XES studies with a laser-based plasma source in a laboratory setting. Our results show that microcalorimeter sensors can already perform high-quality measurements of vtc-XES features in a laboratory setting under static conditions and that dynamic measurements will be possible in the future after reasonable technological developments.

中文翻译:

使用能量色散探测器的钛化合物的价核 X 射线发射光谱

功能纳米材料资助信息中心,它是美国能源部科学设施办公室,位于布鲁克海文国家实验室,资助/奖励编号:DE-SC0012704;国家能源研究科学计算中心 (NERSC),美国能源部科学用户设施办公室,资助/奖励编号:DE-AC02-05CH11231;NIST 测量科学创新计划;美国能源部 (DOE) 科学办公室用户设施由阿贡国家实验室为美国能源部科学办公室运营,资助/奖励编号:DE-AC02-06CH11357 过渡金属化合物的 X 射线发射光谱 (XES) 是一种强大的工具用于研究金属中心的自旋和氧化态。Valence-to-core (vtc) XES 具有特殊意义,因为它包含有关配体性质、杂交和质子化的信息。迄今为止,由于来自 vtc 跃迁的弱荧光线,大多数 vtc-XES 研究都是使用高亮度光源进行的,例如同步加速器。在这里,我们使用 X 射线管源和能量色散微量热计传感器在实验室环境中对不同钛化合物的 vtc-XES 进行系统研究。Ti Kβ 线的半高全宽能量分辨率约为 4 eV,我们测量了不同钛化合物的 XES 特征,并将我们的 vtc 线形状和能量结果与先前发布的和新获得的同步加速器数据进行了比较以及新的理论计算。最后,我们报告了在实验室环境中使用基于激光的等离子体源进行时间分辨 vtc-XES 研究的可行性的模拟。
更新日期:2020-07-27
down
wechat
bug