当前位置: X-MOL 学术Mech. Mach. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive data-driven collaborative optimization of both geometric and loaded contact mechanical performances of non-orthogonal duplex helical face-milling spiral bevel and hypoid gears
Mechanism and Machine Theory ( IF 5.2 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.mechmachtheory.2020.104028
Xuelin Chen , Han Ding , Wen Shao

Abstract Considering the duplex helical face-milling characteristics, an innovative adaptive data-driven collaborative optimization of both tooth flank geometric accuracy and loaded contact mechanical performance evaluations is developed for non-orthogonal spiral bevel and hypoid gears. Firstly, an advanced duplex helical face-milling is simulated for tooth flank modeling and an improved tooth contact analysis (TCA) is proposed for the sensitive assembly problem. Numerical loaded tooth contact analysis (NLTCA) is used to determine data-driven relations between the loaded contact mechanical performance evaluations and assembly error. Then, a new adaptive data-driven collaborative optimization model is established by modifying assembly error evaluations. In addition to tooth flank geometric accuracy, the loaded contact mechanical evaluations including loaded contact pattern, loaded transmission error, loaded contact pressure and loaded contact stress are used as main targets. Here, to get high accuracy and efficiency, the decision-making of collaborative optimization is divided into two sub-systems: i) Loaded contact mechanical performance multi-objective optimization (MOO) for target flank determination. Here, an achievement function approach is used to get Pareto optimal solution. ii) Tooth flank geometry optimization by assembly error modification. Where, sensitivity analysis strategy is applied to select the optimal design variables. The given numerical instance can verify the proposed method.

中文翻译:

非正交双螺旋面铣螺旋锥齿轮和准双曲面齿轮几何和负载接触力学性能的自适应数据驱动协同优化

摘要 考虑到双螺旋面铣削特性,针对非正交螺旋锥齿轮和准双曲面齿轮开发了一种创新的自适应数据驱动协同优化齿面几何精度和负载接触机械性能评估。首先,为齿面建模模拟了先进的双螺旋面铣削,并针对敏感的装配问题提出了改进的齿接触分析 (TCA)。数值加载齿接触分析 (NLTCA) 用于确定加载接触机械性能评估和装配误差之间的数据驱动关系。然后,通过修改装配误差评估,建立了一种新的自适应数据驱动的协同优化模型。除了齿面几何精度,加载接触力学评估包括加载接触模式、加载传输误差、加载接触压力和加载接触应力作为主要目标。在这里,为了获得高精度和高效率,协同优化的决策分为两个子系统:i)用于目标侧翼确定的负载接触机械性能多目标优化(MOO)。在这里,使用成就函数方法来获得帕累托最优解。ii) 通过装配误差修正优化齿面几何形状。其中,敏感性分析策略用于选择最优设计变量。给定的数值实例可以验证所提出的方法。为了获得高精度和高效率,协同优化的决策分为两个子系统:i)用于目标侧翼确定的负载接触机械性能多目标优化(MOO)。在这里,使用成就函数方法来获得帕累托最优解。ii) 通过装配误差修正优化齿面几何形状。其中,敏感性分析策略用于选择最优设计变量。给定的数值实例可以验证所提出的方法。为了获得高精度和高效率,协同优化的决策分为两个子系统:i)用于目标侧翼确定的负载接触机械性能多目标优化(MOO)。在这里,使用成就函数方法来获得帕累托最优解。ii) 通过装配误差修正优化齿面几何形状。其中,敏感性分析策略用于选择最优设计变量。给定的数值实例可以验证所提出的方法。ii) 通过装配误差修正优化齿面几何形状。其中,敏感性分析策略用于选择最优设计变量。给定的数值实例可以验证所提出的方法。ii) 通过装配误差修正优化齿面几何形状。其中,敏感性分析策略用于选择最优设计变量。给定的数值实例可以验证所提出的方法。
更新日期:2020-12-01
down
wechat
bug