当前位置: X-MOL 学术Arab. J. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study of similar simulation of locked-in stress in rock based on simplified mechanical model
Arabian Journal of Geosciences ( IF 1.827 ) Pub Date : 2020-07-26 , DOI: 10.1007/s12517-020-05719-7
Hansheng Geng , Hongfa Xu , LinJian Ma , Yinhao Yang , Lu Dong , Xin Liu

In the environment of deep earth, the “locked-in” stress is widely distributed and considered to be the main cause of rock engineering disaster. But when the rock sample is brought back to the laboratory from deep rock mass of high stress, temperature, and hydraulic pressure, the locked-in stress is dissipated over time. In this paper, similar materials are used to simulate the locked-in stress in the rock. Assuming that “locked-in” stresses in the rock are randomly distributed in the form of spherical inclusions, a simplified geometric model is proposed. By making the “locked-in” stress in rock equivalent to the thermal stress caused by the uncoordinated deformation of inclusion in the rock-like material, the elastic theory formula which expresses the relationship among temperature increment, mechanical parameters of rock-like materials, mechanical parameters of inclusions, and equivalent locked-in stress is deduced. According to the thermodynamic properties of various materials, nitrile rubber is selected as inclusion material. On the basis of the relationship among the temperature increment, the mechanical parameters of the rock-like material and that of the mechanical parameters of the inclusions, and the equivalent “locked-in” stress, an appropriate rock-like material is selected as the matrix material. The “locked-in” stress produced by the inclusions in different ambient temperatures was tested by self-designed method. By comparing and revising, the empirical equation to quantify the locked-in stress is obtained.

中文翻译:

基于简化力学模型的岩石锁定应力相似模拟实验研究

在深土环境中,“锁定”应力分布广泛,被认为是岩石工程灾难的主要原因。但是,当岩石样品从高应力,高温度和高水压的深层岩石中带回实验室时,锁定应力会随时间消散。在本文中,类似的材料用于模拟岩石中的锁定应力。假设岩石中的“锁定”应力以球形夹杂物的形式随机分布,提出了一种简化的几何模型。通过使岩石中的“锁定”应力等于由岩石状材料中夹杂物的不协调变形引起的热应力,来表达温度理论,岩石状材料的力学参数之间的关系的弹性理论公式,得出夹杂物的力学参数以及等效的锁定应力。根据各种材料的热力学性质,选择丁腈橡胶作为包裹材料。根据温度增量,岩石材料的机械参数和夹杂物的机械参数以及等效的“锁定”应力之间的关系,选择合适的岩石材料作为材料。基质材料。通过自设计方法测试了夹杂物在不同环境温度下产生的“锁定”应力。通过比较和修正,获得了量化锁定应力的经验公式。选择丁腈橡胶作为包裹材料。根据温度增量,岩石材料的机械参数和夹杂物的机械参数以及等效的“锁定”应力之间的关系,选择合适的岩石材料作为材料。基质材料。通过自设计方法测试了夹杂物在不同环境温度下产生的“锁定”应力。通过比较和修正,获得了量化锁定应力的经验公式。选择丁腈橡胶作为包裹材料。根据温度增量,岩石材料的机械参数和夹杂物的机械参数以及等效的“锁定”应力之间的关系,选择合适的岩石材料作为材料。基质材料。通过自设计方法测试了夹杂物在不同环境温度下产生的“锁定”应力。通过比较和修正,获得了量化锁定应力的经验公式。通过自设计方法测试了夹杂物在不同环境温度下产生的“锁定”应力。通过比较和修正,获得了量化锁定应力的经验公式。通过自设计方法测试了夹杂物在不同环境温度下产生的“锁定”应力。通过比较和修正,获得了量化锁定应力的经验公式。
更新日期:2020-07-26
down
wechat
bug