当前位置: X-MOL 学术Microb. Cell Fact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
Microbial Cell Factories ( IF 6.4 ) Pub Date : 2020-07-25 , DOI: 10.1186/s12934-020-01408-y
Ning Zhu 1, 2, 3 , Hongmei Jin 1, 2, 3 , Xiangping Kong 1, 2, 3 , Yanyun Zhu 1, 2, 3 , Xiaomei Ye 1, 2, 3 , Yonglan Xi 1, 2, 3 , Jing Du 1, 2, 3 , Bingqing Li 4 , Menghan Lou 4 , Ghulam Mustafa Shah 5
Affiliation  

Enzymatic hydrolysis is a key step in the conversion of lignocellulosic polysaccharides to fermentable sugars for the production of biofuels and high-value chemicals. However, current enzyme preparations from mesophilic fungi are deficient in their thermostability and biomass-hydrolyzing efficiency at high temperatures. Thermophilic fungi represent promising sources of thermostable and highly active enzymes for improving the biomass-to-sugar conversion process. Here we present a comprehensive study on the lignocellulosic biomass-degrading ability and enzyme system of thermophilic fungus Malbranchea cinnamomea N12 and the application of its enzymes in the synergistic hydrolysis of lignocellulosic biomass. Malbranchea cinnamomea N12 was capable of utilizing untreated wheat straw to produce high levels of xylanases and efficiently degrading lignocellulose under thermophilic conditions. Temporal analysis of the wheat straw-induced secretome revealed that M. cinnamomea N12 successively degraded the lignocellulosic polysaccharides through sequential secretion of enzymes targeting xylan and cellulose. Xylanase-enriched cocktail from M. cinnamomea N12 was more active on native and alkali‑pretreated wheat straw than the commercial xylanases from Trichoderma reesei over temperatures ranging from 40 to 75 °C. Integration of M. cinnamomea N12 enzymes with the commercial cellulase preparation increased the glucose and xylose yields of alkali‑pretreated wheat straw by 32 and 166%, respectively, with pronounced effects at elevated temperature. This study demonstrated the remarkable xylanase-producing ability and strategy of sequential lignocellulose breakdown of M. cinnamomea N12. A new process for the hydrolysis of lignocellulosic biomass was proposed, comprising thermophilic enzymolysis by enzymes of M. cinnamomea N12 followed with mesophilic enzymolysis by commercial cellulases. Developing M. cinnamomea N12 as platforms for thermophilic enzyme mixture production will provide new perspectives for improved conversion yields for current biomass saccharification schemes.

中文翻译:

麦芽茶嗜热酶的高温预水解可提高小麦秸秆的可发酵糖产量。

酶促水解是将木质纤维素多糖转化为可发酵糖以生产生物燃料和高价值化学品的关键步骤。然而,目前的中温真菌酶制剂在高温下其热稳定性和生物质水解效率均不足。嗜热真菌代表了热稳定和高活性酶的有前途的来源,可用于改善生物质到糖的转化过程。在此,我们对嗜热真菌Malbranchea cinnamomea N12的木质纤维素生物质降解能力和酶体系进行了全面研究,并探讨了其酶在木质纤维素生物质协同水解中的应用。锦葵N12能够利用未经处理的麦秸生产高含量的木聚糖酶,并在嗜热条件下有效降解木质纤维素。小麦秸秆诱导的分泌组的时间分析显示,肉桂分枝杆菌N12通过依次分泌靶向木聚糖和纤维素的酶,连续降解了木质纤维素多糖。在40至75°C的温度下,来自肉桂分枝杆菌N12的富含木聚糖酶的鸡尾酒在天然麦草和经碱预处理的小麦秸秆上的活性均高于来自里氏木霉的商品木聚糖酶。肉桂酸N12酶与商业纤维素酶制剂的整合分别使碱预处理的麦草的葡萄糖和木糖产量分别增加32%和166%,在高温下效果显着。这项研究证明了杰出的木聚糖酶生产能力和肉桂木霉N12连续木质纤维素分解的策略。提出了一种水解木质纤维素生物质的新方法,该方法包括通过肉桂分枝杆菌N12的酶进行嗜热酶水解,然后通过商业纤维素酶进行中温酶解。开发肉桂糖N12作为嗜热酶混合物生产的平台,将为提高当前生物质糖化方案的转化率提供新的前景。肉桂N12,然后通过商业纤维素酶进行中温酶解。开发肉桂糖N12作为嗜热酶混合物生产的平台,将为提高当前生物质糖化方案的转化率提供新的前景。肉桂N12,然后通过商业纤维素酶进行中温酶解。开发肉桂糖N12作为嗜热酶混合物生产的平台,将为提高当前生物质糖化方案的转化率提供新的前景。
更新日期:2020-07-25
down
wechat
bug