当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Teaching Analytical Chemistry in the Time of COVID-19.
Analytical Chemistry ( IF 7.4 ) Pub Date : 2020-07-24 , DOI: 10.1021/acs.analchem.0c02981


The best-planned syllabus was not ready for the Spring 2020 semester, and now the Fall 2020 semester approaches with a palpable sense of unease. Should we prepare for in-person, online, or hybrid teaching? – the answer is “yes”. Fortunately, we have the benefit of lessons from last semester, and an understanding that no matter how we prepare, agility is a necessity. Chemical educators are working hard to develop resources and prepare contingency plans.(1) With this in mind, the ACS Division of Analytical Chemistry reached out to faculty in the analytical community to discuss their views, plans for the Fall and to learn about resources, like the Analytical Sciences Digital Library (ASDL),(2) that can help. While in-person classes are preferable, remote teaching can be a manageable alternative. Synchronous delivery of lectures provides opportunities to engage students using current best-practices in teaching. Jill Robinson (Indiana University) and Tom Wenzel (Bates College) found clever routes to use active learning in their virtual classrooms. Modern video conferencing and course management systems allow for random or instructor-assigned groups in breakout rooms. Robinson used the polling tool in Zoom to assess her students’ understanding of problems. When large numbers of students found a problem challenging, breakout rooms provided for lively group discussions. As assessing student understanding is key, in smaller classes, individual students report out on group discussions and compare their answers to other groups. In larger classes, a group reporter enters answers into Chat, allowing the instructor to identify student misconceptions and provide specific feedback during whole-class discussion. A rich active-learning community on the ASDL provides many exercises and questions suitable for small discussion groups.(3) For David Harvey (DePauw University), the rapid shift in March 2020 from working with students in person versus at distance was jarring. Although not easy, the transition for lecture classes was relatively straightforward. This was not the case for lab work. Harvey noted, “Making measurements takes time, but if we cannot at this moment be in the lab, then we can capture that time and use it in different ways. Using an instrument simulator, for example, we can have students approach a new topic virtually—exploring how an instrument’s settings affect the data we collect—and then in class working to understand the relationship between those settings and the data.” Chris Harrison of San Diego State University shared similar sentiments, stating “Come Fall, the big challenge will be finding a way to meaningfully train and reinforce the lab skills that we expect for students in analytical chemistry. With less than half the regular lab time, I am aiming to teach my students the most important skills for an analytical lab, supplementing typical labs that are missed with take-home kits and simulated lab data.” Augustus Way Fountain of the University of South Carolina concurred, expressing, “I think we can safely say that lecture and recitation can be replaced with an online experience. However, the laboratory is where I have my greatest concern.” This Spring, Fountain found that the best approach was to record himself performing the laboratories, providing students with the data for them to analyze and report on. Fountain added, “Chemistry is as much hands-on laboratory skill as it is book knowledge. We can’t replicate the full laboratory experience remotely. Addressing this gap is where we really need to place our emphasis for labs in the Fall.” One promising way to address the need for authentic hands-on lab experiments is to use research technologies, such as microfluidics, to safely deliver the lab experiences at home. In the MICRO project,(4) funded by HHMI, a collaboration between Skidmore College, Notre Dame, Oregon State, and University of Iowa, Kimberley Frederick and colleagues are developing laboratories that make use of paper microfluidic devices to deliver experiments that teach titrations, colorimetry, electrochemistry, and separations. Because the technology is inexpensive, safe, and rapid, students can have more autonomy to learn experiment development skills than they would in a traditional lab format and thus the laboratories are designed to be more inquiry-based. As Frederick stated, “Because of their flexibility, we are hopeful that microfluidic-based labs will do an even better job than some of the traditional glassware-based experiments for teaching our students how real analytical method development is done and will be useful beyond the pandemic crisis we are currently in”. Thomas Spudich (Maryville University) noted, “We all have different constraints placed on us by our institutions, and there won’t be a one-size-fits-all solution. But, generally, we need to be able to adapt lab experiments for implementation at home.” Tom described an effort at ASDL, which includes several contributors to this editorial, to share laboratories and simulations that can be completed remotely. Supporting documents and handouts will allow for easy adoption and adaptation. The ASDL remote laboratories community(5) will eventually provide materials for general chemistry and high school chemistry and moderated discussion forums for educators as well. Equity and engagement are critical aspects to consider when developing online laboratories. For Anna Cavinato (Eastern Oregon University) teaching General Chemistry lab was the most challenging. Cavinato was able to adapt a module she had previously published in the ASDL,(6) which provides experiments and data sets for nitrates, phosphates, and metals in water. As she reflects on her experience, Cavinato noted that a major challenge for her students was Internet access and encourages considering infrastructure limitations in rural areas so all students have an equal and inclusive remote educational experience. Engaging students under these circumstances can be difficult. Joel Destino (Creighton University) said, “While teaching last Spring, I wanted to see what kind of chemical analysis students could do at home. One student completed an optional assignment by developing an absorption-based external calibration method using a smartphone camera, kitchen utensils, food dye solutions, and image analysis software. Their results were encouraging, demonstrating the basics of method development can be taught with at-home experimentation.” For the Fall 2020 semester, Joel and colleague Erin Gross are planning for a mix of at-home and traditional experiments for their Instrumental Laboratory course. Gross said, “We developed experiments that could be adapted for a portable, at-home kit experiment or project, centered on safe, real-life samples. One example is an amperometric glucose determination.(7) Electrochemical glucometers with a package of test strips can be purchased for under $20.” Gross noted this material will be available at the new ASDL remote lab portal. In the coming semester, we have a chance to address some of the shortcomings encountered last Spring, but challenges remain. Striking a balance between the right content and constraints posed by remote learning is critical. Flexibility and awareness of how students learn best with resources they can access will be key to an engaging learning experience. Viable remote surrogates for the laboratory experience remain the most pressing need. The proverb–necessity is the mother of invention–feels especially apt for analytical laboratories. Fortunately, we do not need to invent alone. ASDL is a resource to keep in mind, and contributing to the remote laboratories project at ASDL, or engaging in discussion forums, is welcome. As we collectively prepare for Fall 2020, feel free to contact the sources in this editorial or the Division if we can help or answer questions. Views expressed in this editorial are those of the authors and not necessarily the views of the ACS. This article references 7 other publications.

中文翻译:

COVID-19 时期的分析化学教学。

2020年春季学期的最佳教学大纲尚未准备好,而现在2020年秋季学期的到来却带着明显的不安感。我们应该为面对面、在线或混合教学做好准备吗?– 答案是“是”。幸运的是,我们受益于上学期的经验教训,并且认识到无论我们如何准备,敏捷性都是必要的。化学教育工作者正在努力开发资源并准备应急计划。(1) 考虑到这一点,ACS 分析化学部门联系了分析界的教师,讨论他们的观点、秋季计划并了解资源、像分析科学数字图书馆 (ASDL),(2) 可以提供帮助。虽然面对面授课更可取,但远程教学也是一种易于管理的选择。同步授课提供了让学生利用当前最佳教学实践的机会。Jill Robinson(印第安纳大学)和 Tom Wenzel(贝茨学院)找到了在虚拟教室中使用主动学习的巧妙途径。现代视频会议和课程管理系统允许在分组讨论室中随机或由教师分配小组。Robinson 使用 Zoom 中的投票工具来评估学生对问题的理解。当大量学生发现某个问题具有挑战性时,分组讨论室可以进行活跃的小组讨论。由于评估学生的理解程度是关键,因此在小班中,个别学生会报告小组讨论,并将他们的答案与其他小组进行比较。在较大的班级中,小组记者将答案输入聊天中,使教师能够识别学生的误解并在全班讨论中提供具体的反馈。ASDL 上丰富的主动学习社区提供了许多适合小型讨论小组的练习和问题。(3) 对于 David Harvey(迪堡大学)来说,2020 年 3 月与学生面对面工作与远程工作的迅速转变令人感到不舒服。虽然不容易,但讲座课程的过渡相对简单。实验室工作并非如此。哈维指出,“进行测量需要时间,但如果我们现在不能在实验室里,那么我们可以捕捉这些时间并以不同的方式利用它。例如,使用仪器模拟器,我们可以让学生虚拟地接触一个新主题——探索仪器的设置如何影响我们收集的数据——然后在课堂上努力理解这些设置和数据之间的关系。” 圣地亚哥州立大学的克里斯·哈里森也有类似的看法,他表示:“到了秋天,最大的挑战将是找到一种方法来有效地培训和加强我们对分析化学学生的实验室技能的期望。我的目标是用不到一半的常规实验室时间来教我的学生分析实验室最重要的技能,补充带回家的套件和模拟实验室数据所错过的典型实验室。” 南卡罗来纳大学的 Augustus Way Fountain 对此表示赞同,他表示:“我认为我们可以有把握地说,讲座和背诵可以用在线体验来取代。然而,实验室是我最关心的地方。” 今年春天,方丹发现最好的方法是记录自己在实验室中的表现,为学生提供数据供他们分析和报告。Fountain 补充道:“化学既是书本知识,也是实验室实践技能。我们无法远程复制完整的实验室体验。解决这一差距是我们秋季实验室真正需要重点关注的地方。” 满足真正的动手实验室实验需求的一种有前途的方法是使用微流体等研究技术在家中安全地提供实验室体验。在 HHMI 资助的 MICRO 项目 (4) 中,俄勒冈州立大学斯基德莫尔学院和爱荷华大学合作,Kimberley Frederick 及其同事正在开发利用纸质微流体装置进行滴定实验的实验室,比色法、电化学和分离。由于该技术便宜、安全且快速,因此与传统实验室形式相比,学生可以有更多的自主权来学习实验开发技能,因此实验室的设计更加以探究为基础。正如 Frederick 所说,“由于其灵活性,我们希望基于微流控的实验室能够比一些传统的基于玻璃器皿的实验做得更好,以教导我们的学生如何进行真正的分析方法开发,并且将在超越我们目前正处于大流行危机中”。Thomas Spudich(玛丽维尔大学)指出:“我们的机构对我们施加了不同的限制,并且不会有一个一刀切的解决方案。但是,一般来说,我们需要能够调整实验室实验以便在家里实施。” Tom 描述了 ASDL(其中包括这篇社论的几位撰稿人)所做的努力,以共享可以远程完成的实验室和模拟。支持文件和讲义将有助于轻松采用和适应。ASDL 远程实验室社区(5) 最终将为普通化学和高中化学提供材料,并为教育工作者主持讨论论坛。公平和参与是开发在线实验室时需要考虑的关键方面。对于 Anna Cavinato(东俄勒冈大学)来说,教授普通化学实验室是最具挑战性的。Cavinato 能够改编她之前在 ASDL (6) 中发布的模块,该模块提供水中硝酸盐、磷酸盐和金属的实验和数据集。当她回顾自己的经历时,卡维纳托指出,她的学生面临的一个主要挑战是互联网接入,并鼓励考虑农村地区基础设施的限制,以便所有学生都能获得平等和包容的远程教育体验。在这种情况下让学生参与可能很困难。Joel Destino(克赖顿大学)说:“去年春天教学时,我想看看学生可以在家进行什么样的化学分析。一名学生完成了一项可选作业,使用智能手机摄像头、厨房用具、食用染料溶液和图像分析软件开发基于吸收的外部校准方法。他们的结果令人鼓舞,表明可以通过家庭实验教授方法开发的基础知识。” 在 2020 年秋季学期,Joel 和同事 Erin Gross 计划为他们的仪器实验室课程混合在家和传统实验。格罗斯说:“我们开发了适合便携式、家用套件实验或项目的实验,以安全、真实的样本为中心。一个例子是电流法葡萄糖测定。(7) 带有一包测试条的电化学血糖仪可以以不到 20 美元的价格购买。” Gross 指出,该材料将在新的 ASDL 远程实验室门户上提供。在下个学期,我们有机会解决去年春天遇到的一些缺点,但挑战仍然存在。在正确的内容和远程学习带来的限制之间取得平衡至关重要。灵活性和对学生如何利用他们可以获得的资源最好地学习的认识将是吸引人的学习体验的关键。实验室经验的可行远程替代仍然是最迫切的需求。谚语“需要是发明之母”尤其适合分析实验室。幸运的是,我们不需要单独发明。ASDL 是一个值得记住的资源,欢迎为 ASDL 的远程实验室项目做出贡献,或参与讨论论坛。当我们共同为 2020 年秋季做准备时,如果我们可以提供帮助或回答问题,请随时联系本社论或部门的消息来源。本社论中表达的观点仅代表作者的观点,并不一定代表 ACS 的观点。本文参考了其他 7 篇出版物。乔尔和同事艾琳·格罗斯正在计划为他们的仪器实验室课程混合家庭实验和传统实验。格罗斯说:“我们开发了适合便携式、家用套件实验或项目的实验,以安全、真实的样本为中心。一个例子是电流法葡萄糖测定。(7) 带有一包测试条的电化学血糖仪可以以不到 20 美元的价格购买。” Gross 指出,该材料将在新的 ASDL 远程实验室门户上提供。在下个学期,我们有机会解决去年春天遇到的一些缺点,但挑战仍然存在。在正确的内容和远程学习带来的限制之间取得平衡至关重要。灵活性和对学生如何利用他们可以获得的资源最好地学习的认识将是吸引人的学习体验的关键。实验室经验的可行远程替代仍然是最迫切的需求。谚语“需要是发明之母”尤其适合分析实验室。幸运的是,我们不需要单独发明。ASDL 是一个值得记住的资源,欢迎为 ASDL 的远程实验室项目做出贡献,或参与讨论论坛。当我们共同为 2020 年秋季做准备时,如果我们可以提供帮助或回答问题,请随时联系本社论或部门的消息来源。本社论中表达的观点仅代表作者的观点,并不一定代表 ACS 的观点。本文参考了其他 7 篇出版物。乔尔和同事艾琳·格罗斯正在计划为他们的仪器实验室课程混合家庭实验和传统实验。格罗斯说:“我们开发了适合便携式、家用套件实验或项目的实验,以安全、真实的样本为中心。一个例子是电流法葡萄糖测定。(7) 带有一包测试条的电化学血糖仪可以以不到 20 美元的价格购买。” Gross 指出,该材料将在新的 ASDL 远程实验室门户上提供。在下个学期,我们有机会解决去年春天遇到的一些缺点,但挑战仍然存在。在正确的内容和远程学习带来的限制之间取得平衡至关重要。灵活性和对学生如何利用他们可以获得的资源最好地学习的认识将是吸引人的学习体验的关键。实验室经验的可行远程替代仍然是最迫切的需求。谚语“需要是发明之母”尤其适合分析实验室。幸运的是,我们不需要单独发明。ASDL 是一个值得记住的资源,欢迎为 ASDL 的远程实验室项目做出贡献,或参与讨论论坛。当我们共同为 2020 年秋季做准备时,如果我们可以提供帮助或回答问题,请随时联系本社论或部门的消息来源。本社论中表达的观点仅代表作者的观点,并不一定代表 ACS 的观点。本文参考了其他 7 篇出版物。
更新日期:2020-08-04
down
wechat
bug