当前位置: X-MOL 学术Ramanujan J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous core partitions with nontrivial common divisor
The Ramanujan Journal ( IF 0.7 ) Pub Date : 2020-07-24 , DOI: 10.1007/s11139-020-00289-4
Jean-Baptiste Gramain , Rishi Nath , James A. Sellers

A tremendous amount of research has been done in the last two decades on (st)-core partitions when s and t are relatively prime integers. Here we change perspective slightly and explore properties of (st)-core and \((\bar{s},\bar{t})\)-core partitions for s and t with a nontrivial common divisor g. We begin by recovering, using the g-core and g-quotient construction, the generating function for (st)-core partitions first obtained by Aukerman et al. (Discrete Math 309(9):2712–2720, 2009). Then, using a construction developed by the first two authors, we obtain a generating function for the number of \((\bar{s},\bar{t})\)-core partitions of n. Our approach allows for new results on t-cores and self-conjugate t-cores that are notg-cores and \(\bar{t}\)-cores that are not\(\bar{g}\)-cores, thus strengthening positivity results of Ono and Granville (Trans Am Soc 348:221–228, 1996), Baldwin et al. (J Algebra 297:438–452, 2006), and Kiming (J Number Theory 60:97–102, 1996). We then move to bijections between bar-core partitions and self-conjugate partitions. We give a new, short proof of a correspondence between self-conjugate t-core and \(\bar{t}\)-core partitions when t is odd and positive first due to Yang (Ramanujan J 44:197, 2019). Then, using two different lattice-path labelings, one due to Ford et al. (J Number Theory 129:858–865, 2009), the other to Bessenrodt and Olsson (J Algebra 306:3–16, 2006), we give a bijection between self-conjugate (st)-core and \((\bar{s},\bar{t})\)-core partitions when s and t are odd and coprime. We end this section with a bijection between self-conjugate (st)-core and \((\bar{s},\bar{t})\)-core partitions when s and t are odd and nontrivial g which uses the results stated above. We end the paper by noting (st)-core and \((\bar{s}, \bar{t})\)-core partitions inherit Ramanujan-type congruences from those of g-core and \(\bar{g}\)-core partitions.



中文翻译:

具有非平凡公因数的同时核心分区

在过去的二十年中,当st是相对质数整数时,已经对(s,  t)核心分区进行了大量研究。在这里,我们稍微改变视角和探索(的性质小号, )-core和\((\巴{S},\ {酒吧吨})\)为-core分区小号与非平凡公约数。我们首先使用g -core和g -quotient构造恢复(s,  t)核心分区首先由Aukerman等人获得。(离散数学309(9):2712–2720,2009年)。然后,使用由前两个作者开发的结构,我们得到了一个生成函数为的数目\((\巴{S},\ {酒吧T】)\) -core的分区Ñ。我们的方法允许在g -core的t -core和自共轭t -core和\(\ bar {g} \)的\(\ bar {t} \)- cores上获得新结果。核心,从而加强了Ono和Granville的阳性结果(Trans Am Soc 348:221–228,1996),Baldwin等。(J Algebra 297:438-452,2006)和Kiming(J Number Theory 60:97-102,1996)。然后,我们转到条形核心分区和自共轭分区之间的双射。我们给出了一个新的简短证明,即当t首先由于阳数而为奇数且为正数时,自共轭t -core分区与\(\ bar {t} \)- core分区之间的对应关系(Ramanujan J 44:197,2019)。然后,使用两种不同的晶格路径标记,一种是由于福特等人的缘故。(J Number Theory 129:858–865,2009),另一本是Bessenrodt and Olsson(J Algebra 306:3–16,2006),我们给出了自共轭(s,  t)核心与\((\ bar {s},\ bar {t})\)-st为奇数和互质时核心分区。我们以自共轭(s,  t)核心与\((\ bar {s},\ bar {t})\)- core分区之间的双射结束本节,当st为奇数且非平凡g时,使用上述结果。最后,我们注意到(s,  t)核心和\((\ bar {s},\ bar {t})\)-核心分区从g -core和\(\ bar继承了Ramanujan类型的一致性{g} \)-核心分区。

更新日期:2020-07-25
down
wechat
bug