当前位置: X-MOL 学术SPIN › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A High Reliability Sense Amplifier for Computing In-Memory with STT-MRAM
SPIN ( IF 1.8 ) Pub Date : 2020-01-31 , DOI: 10.1142/s2010324720400019
Li Zhang 1 , Hualian Tang 1 , Beilei Xu 1 , Yiqi Zhuang 1 , Junlin Bao 1
Affiliation  

In the era of big data, massive data requires processing efficiently. However, the limited data bandwidth between the memory and the processor in conventional computer systems could not meet the requirement of data transferring. Computing in-memory has been considered an effective solution to address this problem. In this paper, based on the spin transfer torque-magnetic random access memory (STT-MRAM), a computing in-memory architecture with as few peripheral circuits as possible is proposed. This computing in-memory architecture gives the specific reference cell so that two rows in one array can be activated simultaneously to perform bitwise logic operations, such as OR/NOR and AND/NAND. In addition, with technology scaling down, STT-MRAM suffers from high sensitivity to process variation, which results in more device mismatch in a sense circuit. Additionally, the negative bias temperature instability (NBTI) seriously affects the life of PMOS transistors used in a sense circuit. In this paper, a high-reliability sense amplifier for computing in-memory with STT-MRAM is proposed. By using two self-enabled switching transistors, the proposed sense amplifier not only can decrease the NBTI effect on PMOS transistors but also can achieve a low sensing error rate. Using a CMOS 40[Formula: see text]nm design-kit and an accurate compact model of the STT magnetic tunnel junction (MTJ), mixed transient and statistical simulations have been present to demonstrate the functionality and performance of the proposed circuits.

中文翻译:

用 STT-MRAM 计算内存的高可靠性感测放大器

大数据时代,海量数据需要高效处理。然而,传统计算机系统中内存与处理器之间有限的数据带宽无法满足数据传输的需求。内存计算被认为是解决这个问题的有效解决方案。本文基于自旋转移矩-磁随机存取存储器(STT-MRAM),提出了一种外围电路尽可能少的计算内存架构。这种计算内存架构提供了特定的参考单元,因此可以同时激活一个阵列中的两行以执行按位逻辑运算,例如 OR/NOR 和 AND/NAND。此外,随着技术规模的缩小,STT-MRAM 对工艺变化的敏感性很高,这会导致检测电路中更多的器件失配。此外,负偏压温度不稳定性 (NBTI) 严重影响检测电路中使用的 PMOS 晶体管的寿命。在本文中,提出了一种用于使用 STT-MRAM 进行内存计算的高可靠性读出放大器。通过使用两个自启用的开关晶体管,所提出的检测放大器不仅可以减少 NBTI 对 PMOS 晶体管的影响,而且可以实现低检测错误率。使用 CMOS 40 [公式:见文本]nm 设计套件和 STT 磁隧道结 (MTJ) 的精确紧凑模型,已经存在混合瞬态和统计模拟,以展示所提出电路的功能和性能。提出了一种使用 STT-MRAM 进行内存计算的高可靠性读出放大器。通过使用两个自启用的开关晶体管,所提出的检测放大器不仅可以减少 NBTI 对 PMOS 晶体管的影响,而且可以实现低检测错误率。使用 CMOS 40 [公式:见文本]nm 设计套件和 STT 磁隧道结 (MTJ) 的精确紧凑模型,已经存在混合瞬态和统计模拟,以展示所提出电路的功能和性能。提出了一种使用 STT-MRAM 进行内存计算的高可靠性读出放大器。通过使用两个自启用的开关晶体管,所提出的检测放大器不仅可以减少 NBTI 对 PMOS 晶体管的影响,而且可以实现低检测错误率。使用 CMOS 40 [公式:见文本]nm 设计套件和 STT 磁隧道结 (MTJ) 的精确紧凑模型,已经存在混合瞬态和统计模拟,以展示所提出电路的功能和性能。
更新日期:2020-01-31
down
wechat
bug