当前位置: X-MOL 学术Int. J. Comput. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Moving Least Square-Based Multiple Dimension Decomposition (MDD) Technique for Structural Reliability Analysis
International Journal of Computational Methods ( IF 1.7 ) Pub Date : 2020-06-25 , DOI: 10.1142/s0219876220500243
Amit Kumar Rathi 1 , Arunasis Chakraborty 2
Affiliation  

This paper presents the state-of-the-art on different moving least square (MLS)-based dimension decomposition schemes for reliability analysis and demonstrates a modified version for high fidelity applications. The aim is to improve the performance of MLS-based dimension decomposition in terms of accuracy, number of function evaluations and computational time for large-dimensional problems. With this in view, multiple finite difference high dimension model representation (HDMR) scheme is developed. This anchored decomposition is implemented starting from an initial reference point and progressively evolving in successive iterations. Most probable point (MPP) of failure is identified in every iteration and is used as the reference point for the next decomposition until it converges. Hermite polynomials in MLS framework are used between the support points for efficient interpolation. The support points are generated sequentially using multiple sparse grids based on the Clenshaw–Curtis scheme. Once the global response surface is constructed using the support points generated in each iteration, importance sampling is employed for reliability analysis. Six different benchmark problems are solved to show its performance vis-à-vis other methods. Finally, reliability-based design of a composite plate is demonstrated, clearly showing the advantage and superiority of the proposed improvements in MLS-based multiple dimension decomposition (MDD).

中文翻译:

用于结构可靠性分析的改进的基于移动最小二乘的多维分解 (MDD) 技术

本文介绍了用于可靠性分析的不同基于移动最小二乘 (MLS) 的维度分解方案的最新技术,并展示了用于高保真应用的修改版本。目的是提高基于 MLS 的维度分解在精度、函数评估次数和计算时间方面的性能,以解决大维度问题。鉴于此,开发了多重有限差分高维模型表示(HDMR)方案。这种锚定分解是从初始参考点开始实现的,并在连续迭代中逐渐演变。在每次迭代中识别最可能的故障点 (MPP),并将其用作下一次分解的参考点,直到收敛。在支持点之间使用 MLS 框架中的 Hermite 多项式进行有效插值。支持点是使用基于 Clenshaw-Curtis 方案的多个稀疏网格顺序生成的。一旦使用每次迭代中生成的支持点构建了全局响应面,就可以使用重要性抽样进行可靠性分析。解决了六个不同的基准问题,以显示其相对于其他方法的性能。最后,展示了基于可靠性的复合板设计,清楚地展示了基于 MLS 的多维分解 (MDD) 改进的优势和优越性。一旦使用每次迭代中生成的支持点构建了全局响应面,就可以使用重要性抽样进行可靠性分析。解决了六个不同的基准问题,以显示其相对于其他方法的性能。最后,展示了基于可靠性的复合板设计,清楚地展示了基于 MLS 的多维分解 (MDD) 改进的优势和优越性。一旦使用每次迭代中生成的支持点构建了全局响应面,就可以使用重要性抽样进行可靠性分析。解决了六个不同的基准问题,以显示其相对于其他方法的性能。最后,展示了基于可靠性的复合板设计,清楚地展示了基于 MLS 的多维分解 (MDD) 改进的优势和优越性。
更新日期:2020-06-25
down
wechat
bug