当前位置: X-MOL 学术Soft Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Glass transition temperature of polybutadiene and polyisoprene from high temperature segmental relaxation correlation using molecular dynamics
Soft Materials ( IF 1.2 ) Pub Date : 2020-03-17 , DOI: 10.1080/1539445x.2020.1739709
Pragati Sharma 1 , Sudip Roy 2
Affiliation  

ABSTRACT

Predicting glass transition temperature for rubber and rubber composites is immensely important for tire industry for the development of products and fine-tune process conditions. Molecular dynamics simulation is been used to predict glass transition temperature as a function of molecular-level structural changes, e.g., composition (functional groups), topology, and polymerization. However, prediction of glass transition temperature within experimental error bar from molecular dynamics simulation is only possible from all atomistic description (model) of the system as united atom and coarse-grained models under-predict the values. Conventional way of calculation of glass transition temperature from density (or any other properties which show sharp transition)–temperature plots are computationally very demanding because of atomistic simulations and simulations below the glass transition point, i.e., in glassy state. Here we report a novel method for calculation of glass transition temperature using only segmental relaxation correlation functions calculated at higher temperatures, i.e., above glass transition temperature. We have presented a protocol here and shown for two polymeric systems polybutadiene and polyisoprene. We believe this method cuts the computational cost of predicting glass transition temperature by one-third and will be applicable for industrial applications for structure-property validations.



中文翻译:

分子动力学从高温分段弛豫相关性分析聚丁二烯和聚异戊二烯的玻璃化转变温度

摘要

预测橡胶和橡胶复合材料的玻璃化转变温度对轮胎行业来说对于产品开发和微调工艺条件极为重要。分子动力学模拟已被用来预测玻璃化转变温度与分子水平结构变化的关系,例如分子组成(官能团),拓扑结构和聚合反应。但是,只有从系统的所有原子描述(模型)出发,​​才能通过分子动力学模拟预测实验误差条内的玻璃化转变温度,因为联合原子和粗粒度模型对值的预测不足。根据密度(或任何其他表现出急剧转变的特性)计算玻璃化转变温度的常规方法–温度曲线图的计算要求很高,这是因为原子模拟和低于玻璃化转变点(即玻璃态)的模拟。在这里,我们报告了一种仅使用在较高温度(即高于玻璃化转变温度)下计算的分段弛豫相关函数来计算玻璃化转变温度的新颖方法。我们在这里介绍了一种方案,并显示了两种聚合体系聚丁二烯和聚异戊二烯。我们相信这种方法将预测玻璃化转变温度的计算成本降低了三分之一,并且将适用于结构属性验证的工业应用。在玻璃状态。在这里,我们报告了一种仅使用在较高温度(即高于玻璃化转变温度)下计算的分段弛豫相关函数来计算玻璃化转变温度的新颖方法。我们在这里介绍了一种方案,并显示了两种聚合体系聚丁二烯和聚异戊二烯。我们相信这种方法将预测玻璃化转变温度的计算成本降低了三分之一,并且将适用于结构属性验证的工业应用。在玻璃状态。在这里,我们报告了一种仅使用在较高温度(即高于玻璃化转变温度)下计算的分段弛豫相关函数来计算玻璃化转变温度的新颖方法。我们在这里介绍了一种方案,并显示了两种聚合体系聚丁二烯和聚异戊二烯。我们相信这种方法将预测玻璃化转变温度的计算成本降低了三分之一,并且将适用于结构属性验证的工业应用。

更新日期:2020-03-17
down
wechat
bug