当前位置: X-MOL 学术Sci. Technol. Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain-enhanced high Q-factor GaN micro-electromechanical resonator
Science and Technology of Advanced Materials ( IF 5.5 ) Pub Date : 2020-01-31 , DOI: 10.1080/14686996.2020.1792257
Liwen Sang 1, 2 , Meiyong Liao 3 , Xuelin Yang 4 , Huanying Sun 1 , Jie Zhang 4 , Masatomo Sumiya 3 , Bo Shen 4
Affiliation  

ABSTRACT We report on a highly sensitive gallium nitride (GaN) micro-electromechanical (MEMS) resonator with a record quality factor (Q) exceeding 105 at the high resonant frequency (f) of 911 kHz by the strain engineering for the GaN-on-Si structure. The f of the double-clamped GaN beam bridge is increased from 139 to 911 kHz when the tensile stress is increased to 640 MPa. Although it is usually regarded that the energy dissipation increases with increasing resonant frequency, an ultra-high Q-factor which is more than two orders of magnitude higher than those of the other reported GaN-based MEMS is obtained. The high Q-factor results from the large tensile stress which can be intentionally introduced and engineered in the GaN epitaxial layer by utilizing the lattice mismatch between GaN and Si, leading to the stored elastic energy and drastically decreasing the energy dissipation. The developed GaN MEMS is further demonstrated as a highly sensitive mass sensor with a resolution of 10−12 g/s through detecting the microdroplet evaporation process. This work provides an avenue to improve the f × Q product of the MEMS through an internally strained structure.

中文翻译:

应变增强型高 Q 因子 GaN 微机电谐振器

摘要 我们报告了一种高灵敏度氮化镓 (GaN) 微机电 (MEMS) 谐振器,通过 GaN-on 应变工程在 911 kHz 的高谐振频率 (f) 下具有超过 105 的记录品质因数 (Q)。硅结构。当拉伸应力增加到 640 MPa 时,双钳位 GaN 梁桥的 f 值从 139 kHz 增加到 911 kHz。尽管通常认为能量耗散随着谐振频率的增加而增加,但获得了比其他报道的基于 GaN 的 MEMS 高两个数量级以上的超高 Q 因子。高 Q 因子源于大张应力,可以通过利用 GaN 和 Si 之间的晶格失配有意在 GaN 外延层中引入和设计,导致储存的弹性能量并大大减少能量耗散。通过检测微滴蒸发过程,开发的 GaN MEMS 被进一步证明为分辨率为 10-12 g/s 的高灵敏度质量传感器。这项工作提供了一种通过内部应变结构改善 MEMS 的 f × Q 乘积的途径。
更新日期:2020-01-31
down
wechat
bug