当前位置: X-MOL 学术Road Mater. Pavement Design › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of dynamic repetitive load test of unbound aggregate using precision unbound material analyzer
Road Materials and Pavement Design ( IF 3.7 ) Pub Date : 2019-01-25 , DOI: 10.1080/14680629.2019.1567374
Ning Li 1, 2 , Biao Ma 1 , Hao Wang 2 , Jingnan Zhao 2 , He Wang 3 , Xiaoqing Wang 1
Affiliation  

This study developed discrete element models to simulate the dynamic repetitive load test using precision unbound material analyzer (PUMA). The simulated aggregate was created with the clump method simulating real particle shape. The parameters of the real particle shape were determined by the smoothness degree of particle shape and the required time-steps, which balanced the accuracy of particle shape and computational efficiency. The rubber ball layer (RBL) was adopted as the boundary conditions of repeated load test according to the features of the PUMA apparatus. Through the comparisons of results between numerical simulation and laboratory tests, the thickness of RBL was found close to the median size of particles resulting in the better simulation. Moreover, the numerical simulation results were verified with the conducted laboratory tests. The predicted permanent deformation was consistent with the laboratory measurement, which showed that discrete element based simulation can obtain the reliable results for the dynamic repetitive load test. The predicted permanent deformation using the real particle model was found much closer to the experimental results, which was greater than the one obtained using the ball model. The analytical results of volumetric-axial strains, directions of displacements, and contact forces indicated that the real particle method can better represent the migration movements of aggregates in the laboratory conditions. The simulation results indicate the importance of considering real aggregate shape in discrete element modelling of unbound material behaviour.



中文翻译:

精密未结合材料分析仪对未结合骨料进行动态重复载荷试验的数值模拟

这项研究开发了离散元素模型,以使用精密无粘结材料分析仪(PUMA)模拟动态重复载荷测试。通过模拟实际粒子形状的聚集方法创建了模拟聚集体。真实颗粒形状的参数由颗粒形状的平滑度和所需的时间步长决定,这些参数平衡了颗粒形状的精度和计算效率。根据PUMA设备的特点,橡胶球层(RBL)被用作重复载荷测试的边界条件。通过数值模拟和实验室测试结果的比较,发现RBL的厚度接近颗粒的中值尺寸,从而实现了更好的模拟。此外,数值模拟结果通过进行的实验室测试得到了验证。预测的永久变形与实验室测量结果一致,表明基于离散元素的仿真可以为动态重复载荷测试获得可靠的结果。发现使用实际粒子模型预测的永久变形更接近于实验结果,大于使用球模型获得的永久变形。体积轴向应变,位移方向和接触力的分析结果表明,真实粒子方法可以更好地表示聚集体在实验室条件下的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。这表明基于离散元的仿真可以为动态重复载荷测试获得可靠的结果。发现使用实际粒子模型预测的永久变形更接近于实验结果,大于使用球模型获得的永久变形。体积轴向应变,位移方向和接触力的分析结果表明,真实粒子方法可以更好地表示聚集体在实验室条件下的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。这表明基于离散元的仿真可以为动态重复载荷测试获得可靠的结果。发现使用实际粒子模型预测的永久变形更接近于实验结果,大于使用球模型获得的永久变形。体积轴向应变,位移方向和接触力的分析结果表明,真实粒子方法可以更好地表示聚集体在实验室条件下的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。发现使用实际粒子模型预测的永久变形更接近于实验结果,大于使用球模型获得的永久变形。体积轴向应变,位移方向和接触力的分析结果表明,真实粒子方法可以更好地表示聚集体在实验室条件下的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。发现使用实际粒子模型预测的永久变形更接近于实验结果,大于使用球模型获得的永久变形。体积轴向应变,位移方向和接触力的分析结果表明,真实粒子方法可以更好地表示实验室条件下聚集体的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。接触力表明,真实粒子法可以更好地反映实验室条件下骨料的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。接触力表明,真实粒子法可以更好地反映实验室条件下骨料的迁移运动。仿真结果表明,在未绑定材料行为的离散元素建模中,考虑真实骨料形状的重要性。

更新日期:2019-01-25
down
wechat
bug