当前位置: X-MOL 学术Philos. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Texture transition in Al–Mg alloys: effect of magnesium
Philosophical Magazine ( IF 1.6 ) Pub Date : 2020-05-26 , DOI: 10.1080/14786435.2020.1759834
R. Kalsar 1 , R. Madhavan 1 , R. K. Ray 1, 2 , Satyam Suwas 1
Affiliation  

ABSTRACT The evolution of deformation texture and microstructure in commercially pure Al (cp-Al) and two Al–Mg alloys (Al–4Mg and Al–6Mg) during cold rolling to a very large strain (true strain εt ≈ 3.9) was investigated. The development of deformation texture in cp-Al, after rolling, can be considered as pure metal or Copper-type, which is characterised mainly by the presence of Cu {112}<111>, Bs {110}<112> and S {123}<634> components. The deformation microstructure clearly indicates that deformation mechanism in this case remains slip dominated throughout the deformation range. In the Al–4Mg alloy, the initial slip mode of deformation is finally taken over by mechanism involving both slip and Copper-type shear bands, at higher deformation levels. In contrast, in the Al–6Mg alloy, the slip and twin mode of deformation in the initial stage is replaced by slip and Brass-type shear bands at higher deformation levels. Although a Copper-type deformation texture forms in the two Al–Mg alloys at the initial stage of deformation, there is a significant increase in the intensity of the Bs component and a noticeable decrease in the intensity of the Cu component at higher levels of deformation, particularly in the Al–6Mg alloy. This phenomenon indicates the possibility of transition of the deformation texture from Cu-type to Bs-type, which is concurrent with the addition of Mg. Using visco-plastic self-consistent modelling, the evolution of deformation texture could be simulated for all three materials.

中文翻译:

Al-Mg 合金的织构转变:镁的影响

摘要研究了在冷轧到非常大的应变(真实应变 εt ≈ 3.9)期间,商业纯铝(cp-Al)和两种 Al-Mg 合金(Al-4Mg 和 Al-6Mg)的变形织构和微观结构的演变。cp-Al在轧制后变形织构的发展可以认为是纯金属或铜型,其主要特征是存在Cu{112}<111>、Bs{110}<112>和S{ 123}<634> 组件。变形微观结构清楚地表明,在这种情况下,变形机制在整个变形范围内保持以滑移为主。在 Al-4Mg 合金中,变形的初始滑移模式最终由滑移和铜型剪切带的机制接管,在更高的变形水平。相比之下,在 Al-6Mg 合金中,初始阶段的滑移和孪生变形模式被更高变形水平的滑移和黄铜型剪切带所取代。尽管在变形初期在两种 Al-Mg 合金中形成了铜型变形织构,但 Bs 组分的强度显着增加,而在较高变形水平下 Cu 组分的强度显着降低,特别是在 Al-6Mg 合金中。这种现象表明变形织构有可能从 Cu 型转变为 Bs 型,这与 Mg 的添加同时发生。使用粘塑性自洽建模,可以模拟所有三种材料的变形纹理的演变。尽管在变形的初始阶段,两种 Al-Mg 合金中形成了铜型变形织构,但 Bs 组分的强度显着增加,而在更高的变形水平下,Cu 组分的强度显着降低,特别是在 Al-6Mg 合金中。这种现象表明变形织构有可能从 Cu 型转变为 Bs 型,这与 Mg 的添加同时发生。使用粘塑性自洽建模,可以模拟所有三种材料的变形纹理的演变。尽管在变形的初始阶段,两种 Al-Mg 合金中形成了铜型变形织构,但 Bs 组分的强度显着增加,而在更高的变形水平下,Cu 组分的强度显着降低,特别是在 Al-6Mg 合金中。这种现象表明变形织构有可能从 Cu 型转变为 Bs 型,这与 Mg 的添加同时发生。使用粘塑性自洽建模,可以模拟所有三种材料的变形纹理的演变。这种现象表明变形织构有可能从 Cu 型转变为 Bs 型,这与 Mg 的添加同时发生。使用粘塑性自洽建模,可以模拟所有三种材料的变形纹理的演变。这种现象表明变形织构有可能从 Cu 型转变为 Bs 型,这与 Mg 的添加同时发生。使用粘塑性自洽建模,可以模拟所有三种材料的变形纹理的演变。
更新日期:2020-05-26
down
wechat
bug