当前位置: X-MOL 学术Nucl. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward Exascale: Overview of Large Eddy Simulations and Direct Numerical Simulations of Nuclear Reactor Flows with the Spectral Element Method in Nek5000
Nuclear Technology ( IF 1.5 ) Pub Date : 2020-06-25 , DOI: 10.1080/00295450.2020.1748557
Elia Merzari 1 , Paul Fischer 2, 3 , Misun Min 2 , Stefan Kerkemeier 2 , Aleksandr Obabko 2 , Dillon Shaver 2 , Haomin Yuan 2 , Yiqi Yu 2 , Javier Martinez 2 , Landon Brockmeyer 2 , Lambert Fick 4 , Giacomo Busco 4 , Alper Yildiz 4 , Yassin Hassan 4
Affiliation  

Abstract At the beginning of the last decade, Petascale supercomputers (i.e., computers capable of more than 1 petaFLOP) emerged. Now, at the dawn of exascale supercomputing, we provide a review of recent landmark simulations of portions of reactor components with turbulence-resolving techniques that this computational power has made possible. In fact, these simulations have provided invaluable insight into flow dynamics, which is difficult or often impossible to obtain with experiments alone. We focus on simulations performed with the spectral element method, as this method has emerged as a powerful tool to deliver massively parallel calculations at high fidelity by using large eddy simulation or direct numerical simulation. We also limit this paper to constant-property incompressible flow of a Newtonian fluid in the absence of other body or external forces, although the method is by no means limited to this class of flows. We briefly review the fundamentals of the method and the reasons it is compelling for the simulation of nuclear engineering flows. We review in detail a series of Petascale simulations, including the simulations of helical coil steam generators, fuel assemblies, and pebble beds. Even with Petascale computing, however, limitations for nuclear modeling and simulation tools remain. In particular, the size and scope of turbulence-resolving simulations are still limited by computing power and resolution requirements, which scale with the Reynolds number. In the final part of this paper, we discuss the future of the field, including recent advancements in emerging architectures such as GPU-based supercomputers, which are expected to power the next generation of high-performance computers.

中文翻译:

迈向 Exascale:在 Nek5000 中使用谱元方法对核反应堆流进行大涡模拟和直接数值模拟的概述

摘要 上个十年之初,出现了 Petascale 超级计算机(即能够超过 1 petaFLOP 的计算机)。现在,在百亿亿级超级计算出现之际,我们回顾了最近使用湍流解决技术对反应堆组件部分进行的具有里程碑意义的模拟,这种计算能力使该技术成为可能。事实上,这些模拟提供了对流动动力学的宝贵见解,这很难或通常不可能仅通过实验获得。我们专注于使用光谱元素方法执行的模拟,因为该方法已成为通过使用大涡模拟或直接数值模拟以高保真度提供大规模并行计算的强大工具。我们还将本文限制为在没有其他物体或外力的情况下牛顿流体的恒定特性不可压缩流动,尽管该方法绝不限于此类流动。我们简要回顾了该方法的基本原理以及它对核工程流程的模拟具有吸引力的原因。我们详细回顾了一系列 Petascale 模拟,包括螺旋盘管蒸汽发生器、燃料组件和卵石床的模拟。然而,即使使用 Petascale 计算,核建模和仿真工具的局限性仍然存在。特别是,湍流解析模拟的大小和范围仍然受到计算能力和分辨率要求的限制,这些要求与雷诺数成比例。在本文的最后一部分,我们讨论了该领域的未来,
更新日期:2020-06-25
down
wechat
bug