当前位置: X-MOL 学术Plant Genome › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiomics approach unravels fertility transition in a pigeonpea line for a two‐line hybrid system
The Plant Genome ( IF 4.219 ) Pub Date : 2020-06-18 , DOI: 10.1002/tpg2.20028
Lekha T. Pazhamala 1 , Palak Chaturvedi 2 , Prasad Bajaj 1 , Sandhya Srikanth 1 , Arindam Ghatak 2 , Annapurna Chitikineni 1 , Anke Bellaire 2, 3 , Anupama Hingane 4 , C.V. Sameer Kumar 4 , K.B. Saxena 4 , Wolfram Weckwerth 2, 5 , Rachit K. Saxena 1 , Rajeev K. Varshney 1, 6
Affiliation  

Pigeonpea [Cajanus cajan (L.) Millsp.] is a pulse crop cultivated in the semi‐arid regions of Asia and Africa. It is a rich source of protein and capable of alleviating malnutrition, improving soil health and the livelihoods of small‐holder farmers. Hybrid breeding has provided remarkable improvements for pigeonpea productivity, but owing to a tedious and costly seed production system, an alternative two‐line hybrid technology is being explored. In this regard, an environment‐sensitive male sterile line has been characterized as a thermosensitive male sterile line in pigeonpea precisely responding to day temperature. The male sterile and fertile anthers from five developmental stages were studied by integrating transcriptomics, proteomics and metabolomics supported by precise phenotyping and scanning electron microscopic study. Spatio‐temporal analysis of anther transcriptome and proteome revealed 17 repressed DEGs/DEPs in sterile anthers that play a critical role in normal cell wall morphogenesis and tapetal cell development. The male fertility to sterility transition was mainly due to a perturbation in auxin homeostasis, leading to impaired cell wall modification and sugar transport. Limited nutrient utilization thus leads to microspore starvation in response to moderately elevated day temperature which could be restored with auxin‐treatment in the male sterile line. Our findings outline a molecular mechanism that underpins fertility transition responses thereby providing a process‐oriented two‐line hybrid breeding framework for pigeonpea.

中文翻译:

多元组学方法揭示了两线杂交系统中木豆系的生育力转变

木豆[ Cajanus cajan(L.)Millsp。]是在亚洲和非洲的半干旱地区种植的豆类作物。它是蛋白质的丰富来源,能够减轻营养不良,改善土壤健康和小农户的生计。杂交育种为木豆的生产力提供了显着的提高,但是由于繁琐且昂贵的种子生产系统,正在探索一种替代的两系杂交技术。在这方面,环境敏感的雄性不育系已被表征为精确响应日温度的木豆中的热敏雄性不育系。通过整合转录组学,蛋白质组学和代谢组学(精确表型和扫描电子显微镜研究),研究了五个发育阶段的雄性不育和可育花药。花药转录组和蛋白质组的时空分析显示,在不育花药中有17种DEG / DEP受抑制,它们在正常细胞壁形态发生和绒毡层细胞发育中起关键作用。雄性不育向不育过渡的主要原因是生长素稳态的扰动,导致细胞壁修饰和糖转运受损。因此,有限的养分利用会导致小孢子饥饿,这是由于日间温度适度升高所致,而雄性不育系中的生长素处理可以恢复这种状态。我们的发现概述了支持生育力过渡反应的分子机制,从而为木豆提供了以过程为导向的两系杂交育种框架。
更新日期:2020-06-18
down
wechat
bug