当前位置: X-MOL 学术J. Iron Steel Res. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth of solidified shell in bloom continuous casting mold of hypo-peritectic steel based on a FeS tracer method
Journal of Iron and Steel Research International ( IF 2.5 ) Pub Date : 2020-04-08 , DOI: 10.1007/s42243-020-00394-0
Da-peng Li , Hua-zhang Wu , Hai-feng Wang , Hong Li

Solidification behavior in the mold region plays an important role in production efficiency and steel quality. To investigate shell growth within a mold, the sulfur prints of the entire shell thickness profile from the meniscus to 100 mm below the mold were obtained by adding FeS tracer into molten steel during bloom continuous casting of hypo-peritectic steel. The law of shell thickness evolution along mold height and circumference was analyzed. The results show that there are three weak regions of solidification, which are in the mold upper part, in the mold lower part, and just below mold exit, possibly resulting from periodic fluctuation of air gap between the shell and the mold, the impingement of melt jets on the solidification front, and the decreasing cooling intensity, respectively. Initial solidification point along casting direction appears at approximately 35 mm below the meniscus. Overall, the solidified shell thickness in the inner side of the mold is a little larger than that in the outer side, and the former and the latter reach 25.5 and 24.3 mm at the mold exit, respectively. The non-uniform shell growth in the inner side of the bloom is provided, while shell thicknesses in the narrow face and the outer side follow relatively regular growth. Out of the mold, the thinnest shells on the transverse section exist in the regions of 60–90 mm and 40–70 mm from the corners of the inner and outer sides, respectively, i.e., the off-corners.



中文翻译:

FeS示踪法在高包晶钢大方坯连铸结晶器中凝固壳的生长

结晶器区域的凝固行为对生产效率和钢质量起着重要作用。为了研究结晶器内壳体的生长,在次包晶钢的大方坯连铸过程中,将FeS示踪剂添加到钢水中,可获得从弯月面到结晶器下方100毫米的整个壳体厚度轮廓的硫印。分析了壳厚沿模具高度和周长演变的规律。结果表明,在模具的上部,模具的下部和模具出口的正下方存在三个薄弱的凝固区域,这可能是由壳体和模具之间的气隙的周期性波动,撞击和冲击所致。分别在凝固前沿喷射熔体和降低冷却强度。沿铸造方向的初始凝固点出现在弯月面下方约35毫米处。总体而言,模具内侧的固化壳厚度略大于外侧,前者和后者在模具出口处分别达到25.5和24.3 mm。提供了在大方坯内侧的不均匀的壳生长,而在窄面和外侧的壳厚度遵循相对规则的生长。在模具外,横截面最薄的壳分别位于距内侧和外侧边角60–90 mm和40–70 mm的区域内,即,偏角。前者和后者在模具出口处分别达到25.5和24.3毫米。提供了在大方坯内侧的不均匀的壳生长,而在窄面和外侧的壳厚度遵循相对规则的生长。在模具外,横截面最薄的壳分别位于距内侧和外侧边角60–90 mm和40–70 mm的区域内,即,偏角。前者和后者在模具出口处分别达到25.5和24.3毫米。提供了在大方坯内侧的不均匀的壳生长,而在窄面和外侧的壳厚度遵循相对规则的生长。在模具外,横截面最薄的壳分别位于距内侧和外侧边角60–90 mm和40–70 mm的区域,即不规则角。

更新日期:2020-04-08
down
wechat
bug