当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gallium Nitride: A Versatile Compound Semiconductor as Novel Piezoelectric Film for Acoustic Tweezer in Manipulation of Cancer Cells
IEEE Transactions on Electron Devices ( IF 3.1 ) Pub Date : 2020-08-01 , DOI: 10.1109/ted.2020.3002498
Chao Sun , Fangda Wu , David J. Wallis , Ming Hong Shen , Fan Yuan , Jian Yang , Jianzhong Wu , Zhihua Xie , Dongfang Liang , Hanlin Wang , Rowan Tickle , Roman Mikhaylov , Aled Clayton , You Zhou , Zhenlin Wu , Yongqing Fu , Wenpeng Xun , Xin Yang

Gallium nitride (GaN) is a compound semiconductor which has advantages to generate new functionalities and applications due to its piezoelectric, pyroelectric, and piezo-resistive properties. Recently, surface acoustic wave (SAW)-based acoustic tweezers were developed as an efficient and versatile tool to manipulate nano- and microparticles aiming for patterning, separating, and mixing biological and chemical components. Conventional piezoelectric materials to fabricate SAW devices such as lithium niobate suffer from its low thermal conductivity and incapability of fabricating multiphysical and integrated devices. This article piloted the development of a GaN-based acoustic tweezer (GaNAT) and its application in manipulating microparticles and biological cells. For the first time, the GaN SAW device was integrated with a microfluidic channel to form an acoustofluidic chip for biological applications. The GaNAT demonstrated its ability to work on high power (up to 10 W) with minimal cooling requirement while maintaining the device temperature below 32°C. Acoustofluidic modeling was successfully applied to numerically study and predict acoustic pressure field and particle trajectories within the GaNAT, which agree well with the experimental results on patterning polystyrene microspheres and two types of biological cells including fibroblast and renal tumor cells. The GaNAT allowed both cell types to maintain high viabilities of 84.5% and 92.1%, respectively.

中文翻译:

氮化镓:一种多功能化合物半导体,作为用于操纵癌细胞的声镊的新型压电薄膜

氮化镓 (GaN) 是一种化合物半导体,由于其压电、热电和压阻特性,因此具有产生新功能和应用的优势。最近,基于表面声波 (SAW) 的声学镊子被开发为一种有效且通用的工具,用于操纵纳米和微粒,旨在图案化、分离和混合生物和化学成分。用于制造 SAW 器件(如铌酸锂)的传统压电材料具有低导热性和无法制造多物理集成器件的问题。本文对基于 GaN 的声学镊子 (GaNAT) 的开发及其在操纵微粒和生物细胞中的应用进行了试点。首次,GaN SAW 器件与微流体通道集成,形成用于生物应用的声流体芯片。GaNAT 展示了其在将设备温度保持在 32°C 以下的同时,以最低的冷却要求在高功率(高达 10 W)下工作的能力。声流体建模成功地应用于数值研究和预测 GaNAT 内的声压场和粒子轨迹,这与对聚苯乙烯微球和包括成纤维细胞和肾肿瘤细胞在内的两种生物细胞进行图案化的实验结果非常吻合。GaNAT 使两种细胞类型分别保持 84.5% 和 92.1% 的高存活率。GaNAT 展示了其在将设备温度保持在 32°C 以下的同时,以最低的冷却要求在高功率(高达 10 W)下工作的能力。声流体建模成功地应用于数值研究和预测 GaNAT 内的声压场和粒子轨迹,这与对聚苯乙烯微球和包括成纤维细胞和肾肿瘤细胞在内的两种生物细胞进行图案化的实验结果非常吻合。GaNAT 使两种细胞类型分别保持 84.5% 和 92.1% 的高存活率。GaNAT 展示了其在将设备温度保持在 32°C 以下的同时,以最低的冷却要求在高功率(高达 10 W)下工作的能力。声流体建模成功地应用于数值研究和预测 GaNAT 内的声压场和粒子轨迹,这与对聚苯乙烯微球和包括成纤维细胞和肾肿瘤细胞在内的两种生物细胞进行图案化的实验结果非常吻合。GaNAT 使两种细胞类型分别保持 84.5% 和 92.1% 的高存活率。这与对聚苯乙烯微球和两种类型的生物细胞(包括成纤维细胞和肾肿瘤细胞)进行图案化的实验结果非常吻合。GaNAT 使两种细胞类型分别保持 84.5% 和 92.1% 的高存活率。这与对聚苯乙烯微球和两种类型的生物细胞(包括成纤维细胞和肾肿瘤细胞)进行图案化的实验结果非常吻合。GaNAT 使两种细胞类型分别保持 84.5% 和 92.1% 的高存活率。
更新日期:2020-08-01
down
wechat
bug