当前位置: X-MOL 学术J. Aerosol Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions
Journal of Aerosol Science ( IF 4.5 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jaerosci.2020.105626
Xiaole Chen 1 , Xianguang Zhou 2 , Xueying Xia 1 , Xiaojian Xie 1 , Ping Lu 1 , Yu Feng 3
Affiliation  

Abstract Accurate predictions of the droplet transport, evolution, and deposition in human airways are critical for the quantitative analysis of the health risks due to the exposure to the airborne pollutant or virus transmission. The droplet/particle-vapor interaction, i.e., the evaporation or condensation of the multi-component droplet/particle, is one of the key mechanisms that need to be precisely modeled. Using a validated computational model, the transport, evaporation, hygroscopic growth, and deposition of multi-component droplets were simulated in a simplified airway geometry. A mucus-tissue layer is explicitly modeled in the airway geometry to describe mucus evaporation and heat transfer. Pulmonary flow and aerosol dynamics patterns associated with different inhalation flow rates are visualized and compared. Investigated variables include temperature distributions, relative humidity (RH) distributions, deposition efficiencies, droplet/particle distributions, and droplet growth ratio distributions. Numerical results indicate that the droplet/particle-vapor interaction and the heat and mass transfer of the mucus-tissue layer must be considered in the computational lung aerosol dynamics study, since they can significantly influence the precise predictions of the aerosol transport and deposition. Furthermore, the modeling framework in this study is ready to be expanded to predict transport dynamics of cough/sneeze droplets starting from their generation and transmission in the indoor environment to the deposition in the human respiratory system.

中文翻译:

在具有真实热边界条件的简化气道中对多组分液滴的运输、吸湿生长和沉积进行建模

摘要 准确预测飞沫在人体呼吸道中的运输、演化和沉积对于定量分析由于暴露于空气污染物或病毒传播而导致的健康风险至关重要。液滴/颗粒-蒸汽相互作用,即多组分液滴/颗粒的蒸发或冷凝,是需要精确建模的关键机制之一。使用经过验证的计算模型,在简化的气道几何结构中模拟了多组分液滴的运输、蒸发、吸湿生长和沉积。在气道几何结构中对粘液组织层进行了明确建模,以描述粘液蒸发和热传递。可视化和比较与不同吸入流速相关的肺流动和气溶胶动力学模式。研究的变量包括温度分布、相对湿度 (RH) 分布、沉积效率、液滴/颗粒分布和液滴生长比率分布。数值结果表明,在计算肺气溶胶动力学研究中必须考虑液滴/颗粒 - 蒸汽相互作用以及粘液 - 组织层的热量和质量传递,因为它们可以显着影响气溶胶传输和沉积的精确预测。此外,本研究中的建模框架已准备好扩展以预测咳嗽/打喷嚏飞沫的传输动态,从它们在室内环境中的产生和传播到在人类呼吸系统中的沉积。液滴/粒子分布和液滴生长比率分布。数值结果表明,在计算肺气溶胶动力学研究中必须考虑液滴/颗粒 - 蒸汽相互作用以及粘液 - 组织层的热量和质量传递,因为它们可以显着影响气溶胶传输和沉积的精确预测。此外,本研究中的建模框架已准备好扩展以预测咳嗽/打喷嚏飞沫的传输动态,从它们在室内环境中的产生和传播到在人类呼吸系统中的沉积。液滴/粒子分布和液滴生长比率分布。数值结果表明,在计算肺气溶胶动力学研究中必须考虑液滴/颗粒 - 蒸汽相互作用以及粘液 - 组织层的热量和质量传递,因为它们可以显着影响气溶胶传输和沉积的精确预测。此外,本研究中的建模框架已准备好扩展以预测咳嗽/打喷嚏飞沫的传输动态,从它们在室内环境中的产生和传播到在人类呼吸系统中的沉积。数值结果表明,在计算肺气溶胶动力学研究中必须考虑液滴/颗粒 - 蒸汽相互作用以及粘液 - 组织层的热量和质量传递,因为它们可以显着影响气溶胶传输和沉积的精确预测。此外,本研究中的建模框架已准备好扩展以预测咳嗽/打喷嚏飞沫的传输动态,从它们在室内环境中的产生和传播到在人类呼吸系统中的沉积。数值结果表明,在计算肺气溶胶动力学研究中必须考虑液滴/颗粒 - 蒸汽相互作用以及粘液 - 组织层的热量和质量传递,因为它们可以显着影响气溶胶传输和沉积的精确预测。此外,本研究中的建模框架已准备好扩展以预测咳嗽/打喷嚏飞沫的传输动态,从它们在室内环境中的产生和传播到在人类呼吸系统中的沉积。
更新日期:2021-01-01
down
wechat
bug