当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-07-24 , DOI: 10.1016/j.cej.2020.126350
Tingsheng Zhou , Shuai Chen , Jiachen Wang , Yan Zhang , Jinhua Li , Jing Bai , Baoxue Zhou

Hydrogen generation by solar-driven water splitting is considered as a promising strategy to address energy crisis and environmental emission issues. Bismuth vanadate (BiVO4) is a highly promising photoanode material for photoelectrocatalytic (PEC) water splitting, but its severe bulk and surface charge recombination, sluggish oxygen evolution reaction (OER) kinetics and narrow visible light harvesting are still bottlenecks. Here, an excellent CQDs/FeOOH/BiVO4 photoanode was designed by co-modification of carbon quantum dots (CQDs) and ultrathin β-FeOOH layers (< 10 nm) on BiVO4 to tackle the above issues. The CQDs/FeOOH/BiVO4 shows dramatically enhanced photocurrent, which is 10.7 and 2.98 times higher than BiVO4 and FeOOH/BiVO4 at 0.8 VRHE, with negatively shifted onset potential of 448 and 255 mV, respectively. The maximum incident photon-to-current conversion efficiency (IPCE) of CQDs/FeOOH/BiVO4 is 6.7 and 1.86 times higher than that of BiVO4 and FeOOH/BiVO4, respectively. Additionally, the surface hole injection efficiency (ηsurface) of CQDs/FeOOH/BiVO4 is 7.1 and 2.1 times higher than that of BiVO4 and FeOOH/BiVO4 at 0.8 VRHE, respectively. The results can be attributed to three effects: (I) Synergetic catalysis of CQDs and FeOOH sharply improves the OER kinetics due to the introduction of high-density oxygen vacancies (Ov); (II) The CQDs/BiVO4 heterojunction efficiently suppresses the bulk charge recombination; (III) CQDs significantly boost the light harvesting both in the ultraviolet and visible regions.



中文翻译:

通过共同修饰CQD和超薄β-FeOOH层增强空穴传输和光收集,从而显着增强BiVO 4光电阳极的太阳能驱动水分解

通过太阳能驱动的水分解产生氢被认为是解决能源危机和环境排放问题的有前途的战略。钒酸铋(BiVO 4)是用于光电子催化(PEC)分解水的极有前途的光阳极材料,但是其严重的本体和表面电荷重组,缓慢的氧气析出反应(OER)动力学和狭窄的可见光收集仍然是瓶颈。这里,一个优秀CQDs /的FeOOH / BiVO 4光电阳极的设计是由碳量子点(CQDs)和BiVO超薄β-的FeOOH层(<10纳米)的共同变形例4,以解决上述问题。CQDs / FeOOH / BiVO 4显示出显着增强的光电流,是BiVO 4的10.7和2.98倍FeOH / BiVO 4和FeOOH / BiVO 4在0.8 V RHE时,其开始电位分别为448和255 mV负移。CQDs的最大入射光子-电流转换效率(IPCE)/的FeOOH / BiVO 4是6.7和比BiVO高1.86倍4和针铁矿/ BiVO 4分别。另外,表面的空穴注入效率(η表面CQDs的)/的FeOOH / BiVO 4是7.1,比BiVO的2.1倍更高4和针铁矿/ BiVO 4为0.8V RHE, 分别。结果可归因于三个效应:(I)由于引入了高密度氧空位(O v),CQD和FeOOH的协同催化作用显着改善了OER动力学;(II)CQDs / BiVO 4异质结有效地抑制了体电荷的复合;(III)CQD显着促进了紫外线和可见光区域的光收集。

更新日期:2020-07-24
down
wechat
bug